Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 117

1.

Controllable unzipping for intramolecular junctions of graphene nanoribbons and single-walled carbon nanotubes.

Wei D, Xie L, Lee KK, Hu Z, Tan S, Chen W, Sow CH, Chen K, Liu Y, Wee AT.

Nat Commun. 2013;4:1374. doi: 10.1038/ncomms2366.

PMID:
23340414
2.

Controlled fabrication of intermolecular junctions of single-walled carbon nanotube/graphene nanoribbon.

Yu F, Zhou H, Zhang Z, Wang G, Yang H, Chen M, Tao L, Tang D, He J, Sun L.

Small. 2013 Jul 22;9(14):2405-9. doi: 10.1002/smll.201300617. Epub 2013 May 6.

PMID:
23650121
3.

Carbon nanoelectronics: unzipping tubes into graphene ribbons.

Santos H, Chico L, Brey L.

Phys Rev Lett. 2009 Aug 21;103(8):086801. Epub 2009 Aug 20.

PMID:
19792746
4.

Dopant-specific unzipping of carbon nanotubes for intact crystalline graphene nanostructures.

Lim J, Maiti UN, Kim NY, Narayan R, Lee WJ, Choi DS, Oh Y, Lee JM, Lee GY, Kang SH, Kim H, Kim YH, Kim SO.

Nat Commun. 2016 Jan 22;7:10364. doi: 10.1038/ncomms10364.

5.

Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes.

Parashar UK, Bhandari S, Srivastava RK, Jariwala D, Srivastava A.

Nanoscale. 2011 Sep 1;3(9):3876-82. doi: 10.1039/c1nr10483g. Epub 2011 Aug 15.

PMID:
21842103
6.

Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons.

Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM.

Nature. 2009 Apr 16;458(7240):872-6. doi: 10.1038/nature07872.

PMID:
19370030
7.

The computational design of junctions between carbon nanotubes and graphene nanoribbons.

Li YF, Li BR, Zhang HL.

Nanotechnology. 2009 Jun 3;20(22):225202. doi: 10.1088/0957-4484/20/22/225202. Epub 2009 May 12.

PMID:
19433869
8.

Transition-metal-catalyzed unzipping of single-walled carbon nanotubes into narrow graphene nanoribbons at low temperature.

Wang J, Ma L, Yuan Q, Zhu L, Ding F.

Angew Chem Int Ed Engl. 2011 Aug 22;50(35):8041-5. doi: 10.1002/anie.201101022. Epub 2011 Jul 14.

PMID:
21761515
9.

Graphene nanoribbon composites.

Rafiee MA, Lu W, Thomas AV, Zandiatashbar A, Rafiee J, Tour JM, Koratkar NA.

ACS Nano. 2010 Dec 28;4(12):7415-20. doi: 10.1021/nn102529n. Epub 2010 Nov 16.

PMID:
21080652
10.

Atomically precise bottom-up fabrication of graphene nanoribbons.

Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R.

Nature. 2010 Jul 22;466(7305):470-3. doi: 10.1038/nature09211.

PMID:
20651687
11.

Graphene nanoribbon devices produced by oxidative unzipping of carbon nanotubes.

Sinitskii A, Dimiev A, Kosynkin DV, Tour JM.

ACS Nano. 2010 Sep 28;4(9):5405-13. doi: 10.1021/nn101019h.

PMID:
20812742
12.

Synthesis of graphene nanoribbons encapsulated in single-walled carbon nanotubes.

Talyzin AV, Anoshkin IV, Krasheninnikov AV, Nieminen RM, Nasibulin AG, Jiang H, Kauppinen EI.

Nano Lett. 2011 Oct 12;11(10):4352-6. doi: 10.1021/nl2024678. Epub 2011 Sep 2.

PMID:
21875092
13.

Atomically resolved single-walled carbon nanotube intramolecular junctions.

Ouyang M, Huang JL, Cheung CL, Lieber CM.

Science. 2001 Jan 5;291(5501):97-100.

14.

Controllable chemical vapor deposition growth of few layer graphene for electronic devices.

Wei D, Wu B, Guo Y, Yu G, Liu Y.

Acc Chem Res. 2013 Jan 15;46(1):106-15. doi: 10.1021/ar300103f. Epub 2012 Jul 19.

PMID:
22809220
15.

Graphene nanoribbon aerogels unzipped from carbon nanotube sponges.

Peng Q, Li Y, He X, Gui X, Shang Y, Wang C, Wang C, Zhao W, Du S, Shi E, Li P, Wu D, Cao A.

Adv Mater. 2014 May 28;26(20):3241-7. doi: 10.1002/adma.201305274. Epub 2014 Feb 3.

PMID:
24496883
16.

Intrinsic Charge Separation and Tunable Electronic Band Gap of Armchair Graphene Nanoribbons Encapsulated in a Double-Walled Carbon Nanotube.

Kou L, Tang C, Frauenheim T, Chen C.

J Phys Chem Lett. 2013 Apr 18;4(8):1328-33. doi: 10.1021/jz400037j. Epub 2013 Apr 8.

PMID:
26282148
17.

Unscrolling of multi-walled carbon nanotubes: towards micrometre-scale graphene oxide sheets.

Wong CH, Pumera M.

Phys Chem Chem Phys. 2013 May 28;15(20):7755-9. doi: 10.1039/c3cp51026c. Epub 2013 Apr 19.

PMID:
23598744
18.

Controllable synthesis of graphene and its applications.

Wei D, Liu Y.

Adv Mater. 2010 Aug 10;22(30):3225-41. doi: 10.1002/adma.200904144.

PMID:
20574948
19.

Chemically derived, ultrasmooth graphene nanoribbon semiconductors.

Li X, Wang X, Zhang L, Lee S, Dai H.

Science. 2008 Feb 29;319(5867):1229-32. doi: 10.1126/science.1150878. Epub 2008 Jan 24.

20.

Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.

Barone V, Hod O, Peralta JE, Scuseria GE.

Acc Chem Res. 2011 Apr 19;44(4):269-79. doi: 10.1021/ar100137c. Epub 2011 Mar 9.

PMID:
21388164

Supplemental Content

Support Center