Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 95

1.

Enhanced 5-methylcytosine detection in single-molecule, real-time sequencing via Tet1 oxidation.

Clark TA, Lu X, Luong K, Dai Q, Boitano M, Turner SW, He C, Korlach J.

BMC Biol. 2013 Jan 22;11:4. doi: 10.1186/1741-7007-11-4.

2.

TET-catalyzed oxidation of intragenic 5-methylcytosine regulates CTCF-dependent alternative splicing.

Marina RJ, Sturgill D, Bailly MA, Thenoz M, Varma G, Prigge MF, Nanan KK, Shukla S, Haque N, Oberdoerffer S.

EMBO J. 2016 Feb 1;35(3):335-55. doi: 10.15252/embj.201593235. Epub 2015 Dec 28.

3.

Methyl-CpG binding domain protein 1 regulates localization and activity of Tet1 in a CXXC3 domain-dependent manner.

Zhang P, Rausch C, Hastert FD, Boneva B, Filatova A, Patil SJ, Nuber UA, Gao Y, Zhao X, Cardoso MC.

Nucleic Acids Res. 2017 Jul 7;45(12):7118-7136. doi: 10.1093/nar/gkx281.

4.

Quantification of Oxidized 5-Methylcytosine Bases and TET Enzyme Activity.

Liu MY, DeNizio JE, Kohli RM.

Methods Enzymol. 2016;573:365-85. doi: 10.1016/bs.mie.2015.12.006. Epub 2016 Feb 1.

5.

Biochemical characterization of a Naegleria TET-like oxygenase and its application in single molecule sequencing of 5-methylcytosine.

Pais JE, Dai N, Tamanaha E, Vaisvila R, Fomenkov AI, Bitinaite J, Sun Z, Guan S, Corrêa IR Jr, Noren CJ, Cheng X, Roberts RJ, Zheng Y, Saleh L.

Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):4316-21. doi: 10.1073/pnas.1417939112. Epub 2015 Mar 23.

6.

Nuclear exclusion of TET1 is associated with loss of 5-hydroxymethylcytosine in IDH1 wild-type gliomas.

Müller T, Gessi M, Waha A, Isselstein LJ, Luxen D, Freihoff D, Freihoff J, Becker A, Simon M, Hammes J, Denkhaus D, zur Mühlen A, Pietsch T, Waha A.

Am J Pathol. 2012 Aug;181(2):675-83. doi: 10.1016/j.ajpath.2012.04.017. Epub 2012 Jun 9.

PMID:
22688054
7.

Characterization of DNA methyltransferase specificities using single-molecule, real-time DNA sequencing.

Clark TA, Murray IA, Morgan RD, Kislyuk AO, Spittle KE, Boitano M, Fomenkov A, Roberts RJ, Korlach J.

Nucleic Acids Res. 2012 Feb;40(4):e29. doi: 10.1093/nar/gkr1146. Epub 2011 Dec 7.

8.

Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain.

Guo JU, Su Y, Zhong C, Ming GL, Song H.

Cell. 2011 Apr 29;145(3):423-34. doi: 10.1016/j.cell.2011.03.022. Epub 2011 Apr 14.

9.

GADD45a physically and functionally interacts with TET1.

Kienhöfer S, Musheev MU, Stapf U, Helm M, Schomacher L, Niehrs C, Schäfer A.

Differentiation. 2015 Jul-Oct;90(1-3):59-68. doi: 10.1016/j.diff.2015.10.003. Epub 2015 Nov 3.

10.

Tet-mediated covalent labelling of 5-methylcytosine for its genome-wide detection and sequencing.

Zhang L, Szulwach KE, Hon GC, Song CX, Park B, Yu M, Lu X, Dai Q, Wang X, Street CR, Tan H, Min JH, Ren B, Jin P, He C.

Nat Commun. 2013;4:1517. doi: 10.1038/ncomms2527.

11.

Structural insight into substrate preference for TET-mediated oxidation.

Hu L, Lu J, Cheng J, Rao Q, Li Z, Hou H, Lou Z, Zhang L, Li W, Gong W, Liu M, Sun C, Yin X, Li J, Tan X, Wang P, Wang Y, Fang D, Cui Q, Yang P, He C, Jiang H, Luo C, Xu Y.

Nature. 2015 Nov 5;527(7576):118-22. doi: 10.1038/nature15713. Epub 2015 Oct 28.

PMID:
26524525
12.

Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1.

Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A.

Science. 2009 May 15;324(5929):930-5. doi: 10.1126/science.1170116. Epub 2009 Apr 16.

13.

Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation.

Wu H, Zhang Y.

Genes Dev. 2011 Dec 1;25(23):2436-52. doi: 10.1101/gad.179184.111. Review.

14.

Structure of a Naegleria Tet-like dioxygenase in complex with 5-methylcytosine DNA.

Hashimoto H, Pais JE, Zhang X, Saleh L, Fu ZQ, Dai N, Corrêa IR Jr, Zheng Y, Cheng X.

Nature. 2014 Feb 20;506(7488):391-5. doi: 10.1038/nature12905. Epub 2013 Dec 25.

15.

Identification of Sequence Specificity of 5-Methylcytosine Oxidation by Tet1 Protein with High-Throughput Sequencing.

Kizaki S, Chandran A, Sugiyama H.

Chembiochem. 2016 Mar 2;17(5):403-6. doi: 10.1002/cbic.201500646. Epub 2016 Feb 5.

PMID:
26715454
16.

Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells.

Xu Y, Wu F, Tan L, Kong L, Xiong L, Deng J, Barbera AJ, Zheng L, Zhang H, Huang S, Min J, Nicholson T, Chen T, Xu G, Shi Y, Zhang K, Shi YG.

Mol Cell. 2011 May 20;42(4):451-64. doi: 10.1016/j.molcel.2011.04.005. Epub 2011 Apr 21.

17.

TET1 is a DNA-binding protein that modulates DNA methylation and gene transcription via hydroxylation of 5-methylcytosine.

Zhang H, Zhang X, Clark E, Mulcahey M, Huang S, Shi YG.

Cell Res. 2010 Dec;20(12):1390-3. doi: 10.1038/cr.2010.156. Epub 2010 Nov 16. No abstract available.

PMID:
21079648
18.

TET1 regulates hypoxia-induced epithelial-mesenchymal transition by acting as a co-activator.

Tsai YP, Chen HF, Chen SY, Cheng WC, Wang HW, Shen ZJ, Song C, Teng SC, He C, Wu KJ.

Genome Biol. 2014 Dec 3;15(12):513. doi: 10.1186/s13059-014-0513-0.

19.

Single base resolution analysis of 5-methylcytosine and 5-hydroxymethylcytosine by RRBS and TAB-RRBS.

Hahn MA, Li AX, Wu X, Pfeifer GP.

Methods Mol Biol. 2015;1238:273-87. doi: 10.1007/978-1-4939-1804-1_14.

20.

Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA.

He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, Sun Y, Li X, Dai Q, Song CX, Zhang K, He C, Xu GL.

Science. 2011 Sep 2;333(6047):1303-7. doi: 10.1126/science.1210944. Epub 2011 Aug 4.

Supplemental Content

Support Center