Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 142

1.

Down-regulation of NSP2 expression in developmentally young regions of Lotus japonicus roots in response to rhizobial inoculation.

Murakami Y, Yokoyama H, Fukui R, Kawaguchi M.

Plant Cell Physiol. 2013 Apr;54(4):518-27. doi: 10.1093/pcp/pct008. Epub 2013 Jan 17.

PMID:
23335614
2.

A MYB coiled-coil transcription factor interacts with NSP2 and is involved in nodulation in Lotus japonicus.

Kang H, Chu X, Wang C, Xiao A, Zhu H, Yuan S, Yang Z, Ke D, Xiao S, Hong Z, Zhang Z.

New Phytol. 2014 Feb;201(3):837-49. doi: 10.1111/nph.12593. Epub 2013 Nov 11.

3.

Cytokinin induction of root nodule primordia in Lotus japonicus is regulated by a mechanism operating in the root cortex.

Heckmann AB, Sandal N, Bek AS, Madsen LH, Jurkiewicz A, Nielsen MW, Tirichine L, Stougaard J.

Mol Plant Microbe Interact. 2011 Nov;24(11):1385-95. doi: 10.1094/MPMI-05-11-0142.

4.

Nodule Inception creates a long-distance negative feedback loop involved in homeostatic regulation of nodule organ production.

Soyano T, Hirakawa H, Sato S, Hayashi M, Kawaguchi M.

Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14607-12. doi: 10.1073/pnas.1412716111. Epub 2014 Sep 22.

5.

Grafting analysis indicates that malfunction of TRICOT in the root causes a nodulation-deficient phenotype in Lotus japonicus.

Suzaki T, Kawaguchi M.

Plant Signal Behav. 2013 Mar;8(3):e23497. doi: 10.4161/psb.23497. Epub 2013 Jan 18.

6.

Too much love, a novel Kelch repeat-containing F-box protein, functions in the long-distance regulation of the legume-Rhizobium symbiosis.

Takahara M, Magori S, Soyano T, Okamoto S, Yoshida C, Yano K, Sato S, Tabata S, Yamaguchi K, Shigenobu S, Takeda N, Suzaki T, Kawaguchi M.

Plant Cell Physiol. 2013 Apr;54(4):433-47. doi: 10.1093/pcp/pct022. Epub 2013 Feb 6.

PMID:
23390201
7.

Too much love, a root regulator associated with the long-distance control of nodulation in Lotus japonicus.

Magori S, Oka-Kira E, Shibata S, Umehara Y, Kouchi H, Hase Y, Tanaka A, Sato S, Tabata S, Kawaguchi M.

Mol Plant Microbe Interact. 2009 Mar;22(3):259-68. doi: 10.1094/MPMI-22-3-0259.

8.

micro RNA 172 (miR172) signals epidermal infection and is expressed in cells primed for bacterial invasion in Lotus japonicus roots and nodules.

Holt DB, Gupta V, Meyer D, Abel NB, Andersen SU, Stougaard J, Markmann K.

New Phytol. 2015 Oct;208(1):241-56. doi: 10.1111/nph.13445. Epub 2015 May 13.

9.

The small GTPase ROP6 interacts with NFR5 and is involved in nodule formation in Lotus japonicus.

Ke D, Fang Q, Chen C, Zhu H, Chen T, Chang X, Yuan S, Kang H, Ma L, Hong Z, Zhang Z.

Plant Physiol. 2012 May;159(1):131-43. doi: 10.1104/pp.112.197269. Epub 2012 Mar 20.

10.

Expression of the CLE-RS3 gene suppresses root nodulation in Lotus japonicus.

Nishida H, Handa Y, Tanaka S, Suzaki T, Kawaguchi M.

J Plant Res. 2016 Sep;129(5):909-19. doi: 10.1007/s10265-016-0842-z. Epub 2016 Jun 13.

PMID:
27294965
11.

Positional cloning identifies Lotus japonicus NSP2, a putative transcription factor of the GRAS family, required for NIN and ENOD40 gene expression in nodule initiation.

Murakami Y, Miwa H, Imaizumi-Anraku H, Kouchi H, Downie JA, Kawaguchi M, Kawasaki S.

DNA Res. 2006 Dec 31;13(6):255-65. Epub 2007 Jan 22.

PMID:
17244637
12.

Rhizobial infection does not require cortical expression of upstream common symbiosis genes responsible for the induction of Ca(2+) spiking.

Hayashi T, Shimoda Y, Sato S, Tabata S, Imaizumi-Anraku H, Hayashi M.

Plant J. 2014 Jan;77(1):146-59. doi: 10.1111/tpj.12374. Epub 2013 Dec 12.

13.

Characterization of the Lotus japonicus symbiotic mutant lot1 that shows a reduced nodule number and distorted trichomes.

Ooki Y, Banba M, Yano K, Maruya J, Sato S, Tabata S, Saeki K, Hayashi M, Kawaguchi M, Izui K, Hata S.

Plant Physiol. 2005 Apr;137(4):1261-71. Epub 2005 Mar 25.

14.

Shoot control of root development and nodulation is mediated by a receptor-like kinase.

Krusell L, Madsen LH, Sato S, Aubert G, Genua A, Szczyglowski K, Duc G, Kaneko T, Tabata S, de Bruijn F, Pajuelo E, Sandal N, Stougaard J.

Nature. 2002 Nov 28;420(6914):422-6. Epub 2002 Nov 6.

PMID:
12442170
15.

SCARN a Novel Class of SCAR Protein That Is Required for Root-Hair Infection during Legume Nodulation.

Qiu L, Lin JS, Xu J, Sato S, Parniske M, Wang TL, Downie JA, Xie F.

PLoS Genet. 2015 Oct 30;11(10):e1005623. doi: 10.1371/journal.pgen.1005623. eCollection 2015 Oct.

16.

Gene expression and localization of a β-1,3-glucanase of Lotus japonicus.

Osuki K, Hashimoto S, Suzuki A, Araragi M, Takahara A, Kurosawa M, Kucho K, Higashi S, Abe M, Uchiumi T.

J Plant Res. 2016 Jul;129(4):749-58. doi: 10.1007/s10265-016-0811-6. Epub 2016 Mar 7.

PMID:
26951113
17.

Knockdown of LjALD1, AGD2-like defense response protein 1, influences plant growth and nodulation in Lotus japonicus.

Chen W, Li X, Tian L, Wu P, Li M, Jiang H, Chen Y, Wu G.

J Integr Plant Biol. 2014 Nov;56(11):1034-41. doi: 10.1111/jipb.12211. Epub 2014 Jun 19.

PMID:
24797909
18.

Invasion of Lotus japonicus root hairless 1 by Mesorhizobium loti involves the nodulation factor-dependent induction of root hairs.

Karas B, Murray J, Gorzelak M, Smith A, Sato S, Tabata S, Szczyglowski K.

Plant Physiol. 2005 Apr;137(4):1331-44. Epub 2005 Mar 18.

19.

New nodulation mutants responsible for infection thread development in Lotus japonicus.

Yano K, Tansengco ML, Hio T, Higashi K, Murooka Y, Imaizumi-Anraku H, Kawaguchi M, Hayashi M.

Mol Plant Microbe Interact. 2006 Jul;19(7):801-10.

20.

Lotus japonicus clathrin heavy Chain1 is associated with Rho-Like GTPase ROP6 and involved in nodule formation.

Wang C, Zhu M, Duan L, Yu H, Chang X, Li L, Kang H, Feng Y, Zhu H, Hong Z, Zhang Z.

Plant Physiol. 2015 Apr;167(4):1497-510. doi: 10.1104/pp.114.256107. Epub 2015 Feb 25.

Supplemental Content

Support Center