Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Lipid exchange between Borrelia burgdorferi and host cells.

Crowley JT, Toledo AM, LaRocca TJ, Coleman JL, London E, Benach JL.

PLoS Pathog. 2013 Jan;9(1):e1003109. doi: 10.1371/journal.ppat.1003109. Epub 2013 Jan 10.

2.

Cholesterol lipids of Borrelia burgdorferi form lipid rafts and are required for the bactericidal activity of a complement-independent antibody.

LaRocca TJ, Crowley JT, Cusack BJ, Pathak P, Benach J, London E, Garcia-Monco JC, Benach JL.

Cell Host Microbe. 2010 Oct 21;8(4):331-42. doi: 10.1016/j.chom.2010.09.001.

3.

Proving lipid rafts exist: membrane domains in the prokaryote Borrelia burgdorferi have the same properties as eukaryotic lipid rafts.

LaRocca TJ, Pathak P, Chiantia S, Toledo A, Silvius JR, Benach JL, London E.

PLoS Pathog. 2013;9(5):e1003353. doi: 10.1371/journal.ppat.1003353. Epub 2013 May 16.

4.

Immune responses induced by spirochetal outer membrane lipoproteins and glycolipids.

Schröder NW, Eckert J, Stübs G, Schumann RR.

Immunobiology. 2008;213(3-4):329-40. doi: 10.1016/j.imbio.2007.11.003. Epub 2008 Jan 2. Review.

PMID:
18406378
5.
6.

Dynamics of connective-tissue localization during chronic Borrelia burgdorferi infection.

Imai DM, Feng S, Hodzic E, Barthold SW.

Lab Invest. 2013 Aug;93(8):900-10. doi: 10.1038/labinvest.2013.81. Epub 2013 Jun 24.

7.

The lipid raft proteome of Borrelia burgdorferi.

Toledo A, Pérez A, Coleman JL, Benach JL.

Proteomics. 2015 Nov;15(21):3662-75. doi: 10.1002/pmic.201500093. Epub 2015 Sep 28.

PMID:
26256460
8.

Invasion of human neuronal and glial cells by an infectious strain of Borrelia burgdorferi.

Livengood JA, Gilmore RD Jr.

Microbes Infect. 2006 Nov-Dec;8(14-15):2832-40. Epub 2006 Sep 22. Erratum in: Microbes Infect. 2015 Jun;17(6):e1.

PMID:
17045505
10.

Molecular adaptation of Borrelia burgdorferi in the murine host.

Liang FT, Nelson FK, Fikrig E.

J Exp Med. 2002 Jul 15;196(2):275-80.

11.

Regulatory protein BBD18 of the lyme disease spirochete: essential role during tick acquisition?

Hayes BM, Dulebohn DP, Sarkar A, Tilly K, Bestor A, Ambroggio X, Rosa PA.

MBio. 2014 Apr 1;5(2):e01017-14. doi: 10.1128/mBio.01017-14. Erratum in: MBio. 2014;5(4):doi: 10.1128/mBio.01608-14.

12.

Hypercholesterolemia and ApoE deficiency result in severe infection with Lyme disease and relapsing-fever Borrelia.

Toledo A, Monzón JD, Coleman JL, Garcia-Monco JC, Benach JL.

Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5491-6. doi: 10.1073/pnas.1502561112. Epub 2015 Apr 13.

13.

Flow-Tolerant Adhesion of a Bacterial Pathogen to Human Endothelial Cells Through Interaction With Biglycan.

Salo J, Pietikäinen A, Söderström M, Auvinen K, Salmi M, Ebady R, Moriarty TJ, Viljanen MK, Hytönen J.

J Infect Dis. 2016 May 15;213(10):1623-31. doi: 10.1093/infdis/jiw003. Epub 2016 Jan 5.

PMID:
26740275
14.

Selective association of outer surface lipoproteins with the lipid rafts of Borrelia burgdorferi.

Toledo A, Crowley JT, Coleman JL, LaRocca TJ, Chiantia S, London E, Benach JL.

MBio. 2014 Mar 11;5(2):e00899-14. doi: 10.1128/mBio.00899-14.

15.

Versatile roles of CspA orthologs in complement inactivation of serum-resistant Lyme disease spirochetes.

Hammerschmidt C, Koenigs A, Siegel C, Hallström T, Skerka C, Wallich R, Zipfel PF, Kraiczy P.

Infect Immun. 2014 Jan;82(1):380-92. doi: 10.1128/IAI.01094-13. Epub 2013 Nov 4.

17.

Stage-specific global alterations in the transcriptomes of Lyme disease spirochetes during tick feeding and following mammalian host adaptation.

Iyer R, Caimano MJ, Luthra A, Axline D Jr, Corona A, Iacobas DA, Radolf JD, Schwartz I.

Mol Microbiol. 2015 Feb;95(3):509-38. doi: 10.1111/mmi.12882. Epub 2014 Dec 30.

18.

Interleukin-10 alters effector functions of multiple genes induced by Borrelia burgdorferi in macrophages to regulate Lyme disease inflammation.

Gautam A, Dixit S, Philipp MT, Singh SR, Morici LA, Kaushal D, Dennis VA.

Infect Immun. 2011 Dec;79(12):4876-92. doi: 10.1128/IAI.05451-11. Epub 2011 Sep 26.

19.

Molecular mechanisms involved in vascular interactions of the Lyme disease pathogen in a living host.

Norman MU, Moriarty TJ, Dresser AR, Millen B, Kubes P, Chaconas G.

PLoS Pathog. 2008 Oct 3;4(10):e1000169. doi: 10.1371/journal.ppat.1000169.

20.

A surface enolase participates in Borrelia burgdorferi-plasminogen interaction and contributes to pathogen survival within feeding ticks.

Nogueira SV, Smith AA, Qin JH, Pal U.

Infect Immun. 2012 Jan;80(1):82-90. doi: 10.1128/IAI.05671-11. Epub 2011 Oct 24.

Supplemental Content

Support Center