Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 38

1.

Cortical control of affective networks.

Kumar S, Black SJ, Hultman R, Szabo ST, DeMaio KD, Du J, Katz BM, Feng G, Covington HE 3rd, Dzirasa K.

J Neurosci. 2013 Jan 16;33(3):1116-29. doi: 10.1523/JNEUROSCI.0092-12.2013.

2.

Dynamically Timed Stimulation of Corticolimbic Circuitry Activates a Stress-Compensatory Pathway.

Carlson D, David LK, Gallagher NM, Vu MT, Shirley M, Hultman R, Wang J, Burrus C, McClung CA, Kumar S, Carin L, Mague SD, Dzirasa K.

Biol Psychiatry. 2017 Dec 15;82(12):904-913. doi: 10.1016/j.biopsych.2017.06.008. Epub 2017 Jun 15.

3.

Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation.

Li S, Arbuthnott GW, Jutras MJ, Goldberg JA, Jaeger D.

J Neurophysiol. 2007 Dec;98(6):3525-37. Epub 2007 Oct 10.

4.

Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2.

Cardin JA, Carlén M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI.

Nat Protoc. 2010 Feb;5(2):247-54. doi: 10.1038/nprot.2009.228. Epub 2010 Jan 21.

5.

Cross-regional cortical synchronization during affective image viewing.

Miskovic V, Schmidt LA.

Brain Res. 2010 Nov 29;1362:102-11. doi: 10.1016/j.brainres.2010.09.102. Epub 2010 Oct 1.

PMID:
20920492
7.

Reversible large-scale modification of cortical networks during neuroprosthetic control.

Ganguly K, Dimitrov DF, Wallis JD, Carmena JM.

Nat Neurosci. 2011 May;14(5):662-7. doi: 10.1038/nn.2797. Epub 2011 Apr 17.

8.

Cortical and thalamic components of neocortical kindling-induced epileptogenesis in behaving cats.

Nita DA, Cissé Y, Fröhlich F, Timofeev I.

Exp Neurol. 2008 Jun;211(2):518-28. doi: 10.1016/j.expneurol.2008.02.028. Epub 2008 Mar 14.

PMID:
18423621
9.

Closed-loop and activity-guided optogenetic control.

Grosenick L, Marshel JH, Deisseroth K.

Neuron. 2015 Apr 8;86(1):106-39. doi: 10.1016/j.neuron.2015.03.034. Review.

10.

Neurophysiology of cortical stimulation.

Lefaucheur JP.

Int Rev Neurobiol. 2012;107:57-85. doi: 10.1016/B978-0-12-404706-8.00005-X. Review.

PMID:
23206678
11.

Neural synchrony and the development of cortical networks.

Uhlhaas PJ, Roux F, Rodriguez E, Rotarska-Jagiela A, Singer W.

Trends Cogn Sci. 2010 Feb;14(2):72-80. doi: 10.1016/j.tics.2009.12.002. Epub 2010 Jan 14. Review.

PMID:
20080054
12.

Precise multimodal optical control of neural ensemble activity.

Mardinly AR, Oldenburg IA, Pégard NC, Sridharan S, Lyall EH, Chesnov K, Brohawn SG, Waller L, Adesnik H.

Nat Neurosci. 2018 Jun;21(6):881-893. doi: 10.1038/s41593-018-0139-8. Epub 2018 Apr 30.

13.

Effects of electrically coupled inhibitory networks on local neuronal responses to intracortical microstimulation.

Butovas S, Hormuzdi SG, Monyer H, Schwarz C.

J Neurophysiol. 2006 Sep;96(3):1227-36. Epub 2006 Jul 12.

14.

Spontaneous and driven cortical activity: implications for computation.

Ringach DL.

Curr Opin Neurobiol. 2009 Aug;19(4):439-44. doi: 10.1016/j.conb.2009.07.005. Epub 2009 Aug 3. Review.

15.

Behavioral and electrophysiological effects of cortical microstimulation parameters.

Bari BA, Ollerenshaw DR, Millard DC, Wang Q, Stanley GB.

PLoS One. 2013 Dec 5;8(12):e82170. doi: 10.1371/journal.pone.0082170. eCollection 2013.

16.

Spontaneous high-frequency (10-80 Hz) oscillations during up states in the cerebral cortex in vitro.

Compte A, Reig R, Descalzo VF, Harvey MA, Puccini GD, Sanchez-Vives MV.

J Neurosci. 2008 Dec 17;28(51):13828-44. doi: 10.1523/JNEUROSCI.2684-08.2008.

17.

Transcranial pulsed magnetic field stimulation facilitates reorganization of abnormal neural circuits and corrects behavioral deficits without disrupting normal connectivity.

Rodger J, Mo C, Wilks T, Dunlop SA, Sherrard RM.

FASEB J. 2012 Apr;26(4):1593-606. doi: 10.1096/fj.11-194878. Epub 2012 Jan 5.

PMID:
22223750
18.

Neural dynamics in cortical networks--precision of joint-spiking events.

Aertsen A, Diesmann M, Gewaltig MO, Grün S, Rotter S.

Novartis Found Symp. 2001;239:193-204; discussion 204-7, 234-40. Review.

PMID:
11529312
19.

Neurochemical, electrophysiological and pharmacological profiles of the selective inhibitor of the glycine transporter-1 SSR504734, a potential new type of antipsychotic.

Depoortère R, Dargazanli G, Estenne-Bouhtou G, Coste A, Lanneau C, Desvignes C, Poncelet M, Heaulme M, Santucci V, Decobert M, Cudennec A, Voltz C, Boulay D, Terranova JP, Stemmelin J, Roger P, Marabout B, Sevrin M, Vigé X, Biton B, Steinberg R, Françon D, Alonso R, Avenet P, Oury-Donat F, Perrault G, Griebel G, George P, Soubrié P, Scatton B.

Neuropsychopharmacology. 2005 Nov;30(11):1963-85.

20.

Behavioral profile of P2X7 receptor knockout mice in animal models of depression and anxiety: relevance for neuropsychiatric disorders.

Basso AM, Bratcher NA, Harris RR, Jarvis MF, Decker MW, Rueter LE.

Behav Brain Res. 2009 Mar 2;198(1):83-90. doi: 10.1016/j.bbr.2008.10.018. Epub 2008 Oct 18.

PMID:
18996151

Supplemental Content

Support Center