Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 118

1.
2.

Fluorescence detection of mercury(II) and lead(II) ions using aptamer/reporter conjugates.

Lin YW, Liu CW, Chang HT.

Talanta. 2011 Apr 15;84(2):324-9. doi: 10.1016/j.talanta.2011.01.016. Epub 2011 Jan 15.

PMID:
21376952
3.

Catalytic gold nanoparticles for fluorescent detection of mercury(II) and lead(II) ions.

Wang CI, Huang CC, Lin YW, Chen WT, Chang HT.

Anal Chim Acta. 2012 Oct 1;745:124-30. doi: 10.1016/j.aca.2012.07.041. Epub 2012 Aug 6.

PMID:
22938616
4.

Fluorescence detection of lead(II) ions through their induced catalytic activity of DNAzymes.

Li CL, Liu KT, Lin YW, Chang HT.

Anal Chem. 2011 Jan 1;83(1):225-30. doi: 10.1021/ac1028787. Epub 2010 Dec 9.

PMID:
21141923
5.

Fluorescent detection of lead in environmental water and urine samples using enzyme mimics of catechin-synthesized Au nanoparticles.

Wu YS, Huang FF, Lin YW.

ACS Appl Mater Interfaces. 2013 Feb;5(4):1503-9. doi: 10.1021/am3030454. Epub 2013 Feb 13.

PMID:
23369297
6.

Simultaneous SERS detection of copper and cobalt at ultratrace levels.

Tsoutsi D, Guerrini L, Hermida-Ramon JM, Giannini V, Liz-Marzán LM, Wei A, Alvarez-Puebla RA.

Nanoscale. 2013 Jul 7;5(13):5841-6. doi: 10.1039/c3nr01518a. Epub 2013 May 22.

PMID:
23695529
7.

[Determination of trace copper based on the fluorescence quenching of phenanthroline].

Sai Y, Li Q.

Guang Pu Xue Yu Guang Pu Fen Xi. 2002 Dec;22(6):1070-1. Chinese.

PMID:
12914203
8.

Detection of copper ions through recovery of the fluorescence of DNA-templated copper/silver nanoclusters in the presence of mercaptopropionic acid.

Su YT, Lan GY, Chen WY, Chang HT.

Anal Chem. 2010 Oct 15;82(20):8566-72. doi: 10.1021/ac101659d.

PMID:
20873802
9.

Peroxidase mimicking DNA-gold nanoparticles for fluorescence detection of the lead ions in blood.

Li CL, Huang CC, Chen WH, Chiang CK, Chang HT.

Analyst. 2012 Nov 21;137(22):5222-8. doi: 10.1039/c2an35599j.

PMID:
23032966
10.

Sequential determination of lead and cobalt in tap water and foods samples by fluorescence.

Talio MC, Alesso M, Acosta MG, Acosta M, Fernández LP.

Talanta. 2014 Sep;127:244-9. doi: 10.1016/j.talanta.2014.04.020. Epub 2014 Apr 24.

PMID:
24913883
11.
12.
13.

Cloud point extraction for the determination of copper, nickel and cobalt ions in environmental samples by flame atomic absorption spectrometry.

Ghaedi M, Shokrollahi A, Ahmadi F, Rajabi HR, Soylak M.

J Hazard Mater. 2008 Feb 11;150(3):533-40. Epub 2007 May 16.

PMID:
17604905
14.

Cobalt(II) selective membrane electrode based on palladium(II) dichloro acetylthiophene fenchone azine.

Isa IM, Mustafar S, Ahmad M, Hashim N, Ghani SA.

Talanta. 2011 Dec 15;87:230-4. doi: 10.1016/j.talanta.2011.10.002. Epub 2011 Oct 10.

PMID:
22099672
15.

Highly selective fluorescence turn-on chemosensor based on naphthalimide derivatives for detection of copper(II) ions.

Chen Z, Wang L, Zou G, Tang J, Cai X, Teng M, Chen L.

Spectrochim Acta A Mol Biomol Spectrosc. 2013 Mar 15;105:57-61. doi: 10.1016/j.saa.2012.12.005. Epub 2012 Dec 14.

PMID:
23291230
17.

Simultaneous preconcentration and determination of copper, nickel, cobalt and lead ions content by flame atomic absorption spectrometry.

Ghaedi M, Ahmadi F, Shokrollahi A.

J Hazard Mater. 2007 Apr 2;142(1-2):272-8. Epub 2006 Aug 12.

PMID:
17011124
18.

Highly selective and sensitive recognition of cobalt(II) ions directly in aqueous solution using carboxyl-functionalized CdS quantum dots as a naked eye colorimetric probe: applications to environmental analysis.

Gore AH, Gunjal DB, Kokate MR, Sudarsan V, Anbhule PV, Patil SR, Kolekar GB.

ACS Appl Mater Interfaces. 2012 Oct 24;4(10):5217-26. doi: 10.1021/am301136q. Epub 2012 Sep 19.

PMID:
22948013
19.
20.

Sensitive and selective spectrofluorimetric determination of chromium(VI) in water by fluorescence enhancement.

Xiang Y, Mei L, Li N, Tong A.

Anal Chim Acta. 2007 Jan 2;581(1):132-6. Epub 2006 Aug 7.

PMID:
17386436

Supplemental Content

Support Center