Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Differential expression of growth factor receptors and membrane-bound tumor markers for imaging in male and female breast cancer.

Vermeulen JF, Kornegoor R, van der Wall E, van der Groep P, van Diest PJ.

PLoS One. 2013;8(1):e53353. doi: 10.1371/journal.pone.0053353. Epub 2013 Jan 4.

2.

Analysis of expression of membrane-bound tumor markers in ductal carcinoma in situ of the breast: paving the way for molecular imaging.

Vermeulen JF, van der Wall E, Witkamp AJ, van Diest PJ.

Cell Oncol (Dordr). 2013 Jul;36(4):333-40. doi: 10.1007/s13402-013-0138-4. Epub 2013 Jun 7.

PMID:
23744486
3.

Immunophenotyping invasive breast cancer: paving the road for molecular imaging.

Vermeulen JF, van Brussel AS, van der Groep P, Morsink FH, Bult P, van der Wall E, van Diest PJ.

BMC Cancer. 2012 Jun 13;12:240. doi: 10.1186/1471-2407-12-240.

4.

GLUT1 and CAIX expression profiles in breast cancer correlate with adverse prognostic factors and MCT1 overexpression.

Pinheiro C, Sousa B, Albergaria A, Paredes J, Dufloth R, Vieira D, Schmitt F, Baltazar F.

Histol Histopathol. 2011 Oct;26(10):1279-86. doi: 10.14670/HH-26.1279.

PMID:
21870331
5.

The potential of hypoxia markers as target for breast molecular imaging--a systematic review and meta-analysis of human marker expression.

Adams A, van Brussel AS, Vermeulen JF, Mali WP, van der Wall E, van Diest PJ, Elias SG.

BMC Cancer. 2013 Nov 10;13:538. doi: 10.1186/1471-2407-13-538. Review.

6.

Hypoxia and metabolic phenotypes during breast carcinogenesis: expression of HIF-1alpha, GLUT1, and CAIX.

Chen CL, Chu JS, Su WC, Huang SC, Lee WY.

Virchows Arch. 2010 Jul;457(1):53-61. doi: 10.1007/s00428-010-0938-0. Epub 2010 Jun 5.

PMID:
20526721
7.

The basal epithelial marker P-cadherin associates with breast cancer cell populations harboring a glycolytic and acid-resistant phenotype.

Sousa B, Ribeiro AS, Nobre AR, Lopes N, Martins D, Pinheiro C, Vieira AF, Albergaria A, Gerhard R, Schmitt F, Baltazar F, Paredes J.

BMC Cancer. 2014 Oct 1;14:734. doi: 10.1186/1471-2407-14-734.

8.

Noninvasive detection of breast cancer lymph node metastasis using carbonic anhydrases IX and XII targeted imaging probes.

Tafreshi NK, Bui MM, Bishop K, Lloyd MC, Enkemann SA, Lopez AS, Abrahams D, Carter BW, Vagner J, Grobmyer SR, Gillies RJ, Morse DL.

Clin Cancer Res. 2012 Jan 1;18(1):207-19. doi: 10.1158/1078-0432.CCR-11-0238. Epub 2011 Oct 20. Erratum in: Clin Cancer Res. 2012 Mar 1;18(5):1483. Gobmyer, Stephen R [corrected to Grobmyer, Stephen R].

9.

Nuclear HIF1A expression is strongly prognostic in sporadic but not familial male breast cancer.

Deb S, Johansson I, Byrne D, Nilsson C, Investigators k, Constable L, Fjällskog ML, Dobrovic A, Hedenfalk I, Fox SB.

Mod Pathol. 2014 Sep;27(9):1223-30. doi: 10.1038/modpathol.2013.231. Epub 2014 Jan 24.

10.

MicroRNA expression profiling of male breast cancer.

Fassan M, Baffa R, Palazzo JP, Lloyd J, Crosariol M, Liu CG, Volinia S, Alder H, Rugge M, Croce CM, Rosenberg A.

Breast Cancer Res. 2009;11(4):R58. doi: 10.1186/bcr2348. Epub 2009 Aug 10.

11.
13.

Upregulation of Claudin-4, CAIX and GLUT-1 in distant breast cancer metastases.

Jiwa LS, van Diest PJ, Hoefnagel LD, Wesseling J, Wesseling P; Dutch Distant Breast Cancer Metastases Consortium, Moelans CB.

BMC Cancer. 2014 Nov 22;14:864. doi: 10.1186/1471-2407-14-864.

14.

Expression of cell metabolism-related genes in different molecular subtypes of triple-negative breast cancer.

Jeon HM, Kim DH, Jung WH, Koo JS.

Tumori. 2013 Jul-Aug;99(4):555-64. doi: 10.1700/1361.15110.

PMID:
24326847
15.

Fibrotic focus and hypoxia in male breast cancer.

Kornegoor R, Verschuur-Maes AH, Buerger H, Hogenes MC, de Bruin PC, Oudejans JJ, Hinrichs B, van Diest PJ.

Mod Pathol. 2012 Oct;25(10):1397-404. doi: 10.1038/modpathol.2012.101. Epub 2012 Jun 8.

16.

Expression of the hypoxia-inducible monocarboxylate transporter MCT4 is increased in triple negative breast cancer and correlates independently with clinical outcome.

Doyen J, Trastour C, Ettore F, Peyrottes I, Toussant N, Gal J, Ilc K, Roux D, Parks SK, Ferrero JM, Pouysségur J.

Biochem Biophys Res Commun. 2014 Aug 15;451(1):54-61. doi: 10.1016/j.bbrc.2014.07.050. Epub 2014 Jul 21.

PMID:
25058459
17.

Necrosis degree displayed in computed tomography images correlated with hypoxia and angiogenesis in breast cancer.

Shan X, Wang D, Chen J, Xiao X, Jiang Y, Wang Y, Fan Y.

J Comput Assist Tomogr. 2013 Jan-Feb;37(1):22-8. doi: 10.1097/RCT.0b013e318279abd1.

PMID:
23321829
18.

Molecular subtyping of male breast cancer by immunohistochemistry.

Kornegoor R, Verschuur-Maes AH, Buerger H, Hogenes MC, de Bruin PC, Oudejans JJ, van der Groep P, Hinrichs B, van Diest PJ.

Mod Pathol. 2012 Mar;25(3):398-404. doi: 10.1038/modpathol.2011.174. Epub 2011 Nov 4.

19.

Carbonic anhydrase XII functions in health and disease.

Waheed A, Sly WS.

Gene. 2017 Aug 5;623:33-40. doi: 10.1016/j.gene.2017.04.027. Epub 2017 Apr 19. Review.

PMID:
28433659
20.

Expression of HIF-1α and Markers of Angiogenesis Are Not Significantly Different in Triple Negative Breast Cancer Compared to Other Breast Cancer Molecular Subtypes: Implications for Future Therapy.

Yehia L, Boulos F, Jabbour M, Mahfoud Z, Fakhruddin N, El-Sabban M.

PLoS One. 2015 Jun 5;10(6):e0129356. doi: 10.1371/journal.pone.0129356. eCollection 2015.

Supplemental Content

Support Center