Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 218


SOX9 regulates low density lipoprotein receptor-related protein 6 (LRP6) and T-cell factor 4 (TCF4) expression and Wnt/β-catenin activation in breast cancer.

Wang H, He L, Ma F, Regan MM, Balk SP, Richardson AL, Yuan X.

J Biol Chem. 2013 Mar 1;288(9):6478-87. doi: 10.1074/jbc.M112.419184.


Wnt signaling activation and mammary gland hyperplasia in MMTV-LRP6 transgenic mice: implication for breast cancer tumorigenesis.

Zhang J, Li Y, Liu Q, Lu W, Bu G.

Oncogene. 2010 Jan 28;29(4):539-49. doi: 10.1038/onc.2009.339.


CREPT/RPRD1B, a recently identified novel protein highly expressed in tumors, enhances the β-catenin·TCF4 transcriptional activity in response to Wnt signaling.

Zhang Y, Liu C, Duan X, Ren F, Li S, Jin Z, Wang Y, Feng Y, Liu Z, Chang Z.

J Biol Chem. 2014 Aug 15;289(33):22589-99. doi: 10.1074/jbc.M114.560979.


Oncogenic KRAS signalling promotes the Wnt/β-catenin pathway through LRP6 in colorectal cancer.

Lemieux E, Cagnol S, Beaudry K, Carrier J, Rivard N.

Oncogene. 2015 Sep 17;34(38):4914-27. doi: 10.1038/onc.2014.416.


Key signaling nodes in mammary gland development and cancer: β-catenin.

Incassati A, Chandramouli A, Eelkema R, Cowin P.

Breast Cancer Res. 2010;12(6):213. doi: 10.1186/bcr2723. Review.


ITF2 prevents activation of the β-catenin-TCF4 complex in colon cancer cells and levels decrease with tumor progression.

Shin HW, Choi H, So D, Kim YI, Cho K, Chung HJ, Lee KH, Chun YS, Cho CH, Kang GH, Kim WH, Park JW.

Gastroenterology. 2014 Aug;147(2):430-442.e8. doi: 10.1053/j.gastro.2014.04.047.


Silibinin inhibits Wnt/β-catenin signaling by suppressing Wnt co-receptor LRP6 expression in human prostate and breast cancer cells.

Lu W, Lin C, King TD, Chen H, Reynolds RC, Li Y.

Cell Signal. 2012 Dec;24(12):2291-6. doi: 10.1016/j.cellsig.2012.07.009.


Niclosamide suppresses cancer cell growth by inducing Wnt co-receptor LRP6 degradation and inhibiting the Wnt/β-catenin pathway.

Lu W, Lin C, Roberts MJ, Waud WR, Piazza GA, Li Y.

PLoS One. 2011;6(12):e29290. doi: 10.1371/journal.pone.0029290.


Context-dependent activation of Wnt signaling by tumor suppressor RUNX3 in gastric cancer cells.

Ju X, Ishikawa TO, Naka K, Ito K, Ito Y, Oshima M.

Cancer Sci. 2014 Apr;105(4):418-24. doi: 10.1111/cas.12356.


MicroRNA-100 suppresses the migration and invasion of breast cancer cells by targeting FZD-8 and inhibiting Wnt/β-catenin signaling pathway.

Jiang Q, He M, Guan S, Ma M, Wu H, Yu Z, Jiang L, Wang Y, Zong X, Jin F, Wei M.

Tumour Biol. 2016 Apr;37(4):5001-11. doi: 10.1007/s13277-015-4342-x.


p15RS attenuates Wnt/{beta}-catenin signaling by disrupting {beta}-catenin·TCF4 Interaction.

Wu Y, Zhang Y, Zhang H, Yang X, Wang Y, Ren F, Liu H, Zhai Y, Jia B, Yu J, Chang Z.

J Biol Chem. 2010 Nov 5;285(45):34621-31. doi: 10.1074/jbc.M110.148791.


The TCF4/β-catenin pathway and chromatin structure cooperate to regulate D-glucuronyl C5-epimerase expression in breast cancer.

Mostovich LA, Prudnikova TY, Kondratov AG, Gubanova NV, Kharchenko OA, Kutsenko OS, Vavilov PV, Haraldson K, Kashuba VI, Ernberg I, Zabarovsky ER, Grigorieva EV.

Epigenetics. 2012 Aug;7(8):930-9. doi: 10.4161/epi.21199.


DEAD-box protein p68 is regulated by β-catenin/transcription factor 4 to maintain a positive feedback loop in control of breast cancer progression.

Guturi KK, Sarkar M, Bhowmik A, Das N, Ghosh MK.

Breast Cancer Res. 2014 Dec 12;16(6):496. doi: 10.1186/s13058-014-0496-5.


Effect of 1,25-dihydroxyvitamin D3 on the Wnt pathway in non-malignant colonic cells.

Gröschel C, Aggarwal A, Tennakoon S, Höbaus J, Prinz-Wohlgenannt M, Marian B, Heffeter P, Berger W, Kállay E.

J Steroid Biochem Mol Biol. 2016 Jan;155(Pt B):224-30. doi: 10.1016/j.jsbmb.2015.02.011.


Cripto-1 enhances the canonical Wnt/β-catenin signaling pathway by binding to LRP5 and LRP6 co-receptors.

Nagaoka T, Karasawa H, Turbyville T, Rangel MC, Castro NP, Gonzales M, Baker A, Seno M, Lockett S, Greer YE, Rubin JS, Salomon DS, Bianco C.

Cell Signal. 2013 Jan;25(1):178-89. doi: 10.1016/j.cellsig.2012.09.024.

Supplemental Content

Support Center