Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 75

1.

Chlamydia pneumoniae impairs the innate immune response in infected epithelial cells by targeting TRAF3.

Wolf K, Fields KA.

J Immunol. 2013 Feb 15;190(4):1695-701. doi: 10.4049/jimmunol.1202443. Epub 2013 Jan 9.

2.

MIP-T3 is a negative regulator of innate type I IFN response.

Ng MH, Ho TH, Kok KH, Siu KL, Li J, Jin DY.

J Immunol. 2011 Dec 15;187(12):6473-82. doi: 10.4049/jimmunol.1100719. Epub 2011 Nov 11.

3.

Proteomic profiling of the TRAF3 interactome network reveals a new role for the ER-to-Golgi transport compartments in innate immunity.

van Zuylen WJ, Doyon P, Clément JF, Khan KA, D'Ambrosio LM, Dô F, St-Amant-Verret M, Wissanji T, Emery G, Gingras AC, Meloche S, Servant MJ.

PLoS Pathog. 2012;8(7):e1002747. doi: 10.1371/journal.ppat.1002747. Epub 2012 Jul 5.

4.

Divergent modulation of Chlamydia pneumoniae infection cycle in human monocytic and endothelial cells by iron, tryptophan availability and interferon gamma.

Bellmann-Weiler R, Martinz V, Kurz K, Engl S, Feistritzer C, Fuchs D, Rupp J, Paldanius M, Weiss G.

Immunobiology. 2010 Sep-Oct;215(9-10):842-8. doi: 10.1016/j.imbio.2010.05.021. Epub 2010 Jun 4.

PMID:
20646782
5.

Essential role of mitochondrial antiviral signaling, IFN regulatory factor (IRF)3, and IRF7 in Chlamydophila pneumoniae-mediated IFN-beta response and control of bacterial replication in human endothelial cells.

Buss C, Opitz B, Hocke AC, Lippmann J, van Laak V, Hippenstiel S, Krüll M, Suttorp N, Eitel J.

J Immunol. 2010 Mar 15;184(6):3072-8. doi: 10.4049/jimmunol.0902947. Epub 2010 Feb 12.

6.

Chlamydophila pneumoniae triggers release of CCL20 and vascular endothelial growth factor from human bronchial epithelial cells through enhanced intracellular oxidative stress and MAPK activation.

Kim TB, Moon KA, Lee KY, Park CS, Bae YJ, Moon HB, Cho YS.

J Clin Immunol. 2009 Sep;29(5):629-36. doi: 10.1007/s10875-009-9306-8. Epub 2009 May 29.

PMID:
19479364
7.

Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response.

Oganesyan G, Saha SK, Guo B, He JQ, Shahangian A, Zarnegar B, Perry A, Cheng G.

Nature. 2006 Jan 12;439(7073):208-11. Epub 2005 Nov 23.

PMID:
16306936
8.

Streptococcus pneumoniae stimulates a STING- and IFN regulatory factor 3-dependent type I IFN production in macrophages, which regulates RANTES production in macrophages, cocultured alveolar epithelial cells, and mouse lungs.

Koppe U, Högner K, Doehn JM, Müller HC, Witzenrath M, Gutbier B, Bauer S, Pribyl T, Hammerschmidt S, Lohmeyer J, Suttorp N, Herold S, Opitz B.

J Immunol. 2012 Jan 15;188(2):811-7. doi: 10.4049/jimmunol.1004143. Epub 2011 Dec 12.

9.

The sst1 resistance locus regulates evasion of type I interferon signaling by Chlamydia pneumoniae as a disease tolerance mechanism.

He X, Berland R, Mekasha S, Christensen TG, Alroy J, Kramnik I, Ingalls RR.

PLoS Pathog. 2013;9(8):e1003569. doi: 10.1371/journal.ppat.1003569. Epub 2013 Aug 29.

11.

Reprogramming of murine macrophages through TLR2 confers viral resistance via TRAF3-mediated, enhanced interferon production.

Perkins DJ, Polumuri SK, Pennini ME, Lai W, Xie P, Vogel SN.

PLoS Pathog. 2013;9(7):e1003479. doi: 10.1371/journal.ppat.1003479. Epub 2013 Jul 11.

12.

STAT1 regulates IFN-alpha beta- and IFN-gamma-dependent control of infection with Chlamydia pneumoniae by nonhemopoietic cells.

Rothfuchs AG, Trumstedt C, Mattei F, Schiavoni G, Hidmark A, Wigzell H, Rottenberg ME.

J Immunol. 2006 Jun 1;176(11):6982-90.

13.

Chlamydophila pneumoniae in human immortal Jurkat cells and primary lymphocytes uncontrolled by interferon-γ.

Ishida K, Kubo T, Saeki A, Yamane C, Matsuo J, Yimin, Nakamura S, Hayashi Y, Kunichika M, Yoshida M, Takahashi K, Hirai I, Yamamoto Y, Shibata K, Yamaguchi H.

Microbes Infect. 2013 Mar;15(3):192-200. doi: 10.1016/j.micinf.2012.11.006. Epub 2012 Nov 20.

PMID:
23178757
14.

Inducible expression of human β-defensin 2 by Chlamydophila pneumoniae in brain capillary endothelial cells.

Tiszlavicz Z, Endrész V, Németh B, Megyeri K, Orosz L, Seprényi G, Mándi Y.

Innate Immun. 2011 Oct;17(5):463-9. doi: 10.1177/1753425910375582. Epub 2010 Jul 20.

PMID:
20647256
15.

Polymorphonuclear neutrophils improve replication of Chlamydia pneumoniae in vivo upon MyD88-dependent attraction.

Rodriguez N, Fend F, Jennen L, Schiemann M, Wantia N, Prazeres da Costa CU, Dürr S, Heinzmann U, Wagner H, Miethke T.

J Immunol. 2005 Apr 15;174(8):4836-44.

16.

Deficiency of XIAP leads to sensitization for Chlamydophila pneumoniae pulmonary infection and dysregulation of innate immune response in mice.

Prakash H, Albrecht M, Becker D, Kuhlmann T, Rudel T.

J Biol Chem. 2010 Jun 25;285(26):20291-302. doi: 10.1074/jbc.M109.096297. Epub 2010 Apr 28.

17.

Host molecular defense mechanisms against Chlamydophila pneumoniae and genetic studies of immune-response-related genes in asthma.

Tamari M, Harada M, Hirota T, Nakamura Y.

Recent Pat Inflamm Allergy Drug Discov. 2009 Jan;3(1):17-25. Review.

PMID:
19149742
18.

Chlamydophila pneumoniae downregulates MHC-class II expression by two cell type-specific mechanisms.

Peschel G, Kernschmidt L, Cirl C, Wantia N, Ertl T, Dürr S, Wagner H, Miethke T, Rodríguez N.

Mol Microbiol. 2010 May;76(3):648-61. doi: 10.1111/j.1365-2958.2010.07114.x. Epub 2010 Mar 10.

19.

Zoledronic acid affects the cytotoxic effects of Chlamydia pneumoniae and the modulation of cytokine production in human osteosarcoma cells.

Rizzo A, Misso G, Bevilacqua N, Donnarumma G, Lombardi A, Galdiero M, Caraglia M.

Int Immunopharmacol. 2014 Sep;22(1):66-72. doi: 10.1016/j.intimp.2014.06.019. Epub 2014 Jun 24.

PMID:
24975838
20.

DOK3 is required for IFN-β production by enabling TRAF3/TBK1 complex formation and IRF3 activation.

Kim SS, Lee KG, Chin CS, Ng SK, Pereira NA, Xu S, Lam KP.

J Immunol. 2014 Jul 15;193(2):840-8. doi: 10.4049/jimmunol.1301601. Epub 2014 Jun 13.

Supplemental Content

Support Center