Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 285

1.

Verification at the protein level of the PIF4-mediated external coincidence model for the temperature-adaptive photoperiodic control of plant growth in Arabidopsis thaliana.

Yamashino T, Nomoto Y, Lorrain S, Miyachi M, Ito S, Nakamichi N, Fankhauser C, Mizuno T.

Plant Signal Behav. 2013 Mar;8(3):e23390. doi: 10.4161/psb.23390. Epub 2013 Jan 8.

2.

A circadian clock- and PIF4-mediated double coincidence mechanism is implicated in the thermosensitive photoperiodic control of plant architectures in Arabidopsis thaliana.

Nomoto Y, Kubozono S, Miyachi M, Yamashino T, Nakamichi N, Mizuno T.

Plant Cell Physiol. 2012 Nov;53(11):1965-73. doi: 10.1093/pcp/pcs141. Epub 2012 Oct 4. Erratum in: Plant Cell Physiol. 2013 Apr;54(4):643. Nomoto, Yuichi [corrected to Nomoto, Yuji].

PMID:
23037004
3.

Circadian clock- and PIF4-controlled plant growth: a coincidence mechanism directly integrates a hormone signaling network into the photoperiodic control of plant architectures in Arabidopsis thaliana.

Nomoto Y, Kubozono S, Yamashino T, Nakamichi N, Mizuno T.

Plant Cell Physiol. 2012 Nov;53(11):1950-64. doi: 10.1093/pcp/pcs137. Epub 2012 Oct 4. Erratum in: Plant Cell Physiol. 2013 Apr;54(4):643. Nomoto, Yuichi [corrected to Nomoto, Yuji].

PMID:
23037003
4.

Phytochrome-interacting factor 4 and 5 (PIF4 and PIF5) activate the homeobox ATHB2 and auxin-inducible IAA29 genes in the coincidence mechanism underlying photoperiodic control of plant growth of Arabidopsis thaliana.

Kunihiro A, Yamashino T, Nakamichi N, Niwa Y, Nakanishi H, Mizuno T.

Plant Cell Physiol. 2011 Aug;52(8):1315-29. doi: 10.1093/pcp/pcr076. Epub 2011 Jun 11.

PMID:
21666227
5.

Circadian clock and PIF4-mediated external coincidence mechanism coordinately integrates both of the cues from seasonal changes in photoperiod and temperature to regulate plant growth in Arabidopsis thaliana.

Nomoto Y, Kubozono S, Miyachi M, Yamashino T, Nakamichi N, Mizuno T.

Plant Signal Behav. 2013 Feb;8(2):e22863. doi: 10.4161/psb.22863. Epub 2012 Nov 15.

7.

The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana.

Niwa Y, Yamashino T, Mizuno T.

Plant Cell Physiol. 2009 Apr;50(4):838-54. doi: 10.1093/pcp/pcp028. Epub 2009 Feb 20.

PMID:
19233867
8.

Phytochrome-imposed oscillations in PIF3 protein abundance regulate hypocotyl growth under diurnal light/dark conditions in Arabidopsis.

Soy J, Leivar P, González-Schain N, Sentandreu M, Prat S, Quail PH, Monte E.

Plant J. 2012 Aug;71(3):390-401. doi: 10.1111/j.1365-313X.2012.04992.x. Epub 2012 Jun 11.

9.

PIF1 promotes phytochrome-regulated growth under photoperiodic conditions in Arabidopsis together with PIF3, PIF4, and PIF5.

Soy J, Leivar P, Monte E.

J Exp Bot. 2014 Jun;65(11):2925-36. doi: 10.1093/jxb/ert465. Epub 2014 Jan 13.

10.

Gibberellin driven growth in elf3 mutants requires PIF4 and PIF5.

Filo J, Wu A, Eliason E, Richardson T, Thines BC, Harmon FG.

Plant Signal Behav. 2015;10(3):e992707. doi: 10.4161/15592324.2014.992707.

12.

Linked circadian outputs control elongation growth and flowering in response to photoperiod and temperature.

Seaton DD, Smith RW, Song YH, MacGregor DR, Stewart K, Steel G, Foreman J, Penfield S, Imaizumi T, Millar AJ, Halliday KJ.

Mol Syst Biol. 2015 Jan 19;11(1):776. doi: 10.15252/msb.20145766.

13.

Genomic analysis of circadian clock-, light-, and growth-correlated genes reveals PHYTOCHROME-INTERACTING FACTOR5 as a modulator of auxin signaling in Arabidopsis.

Nozue K, Harmer SL, Maloof JN.

Plant Physiol. 2011 May;156(1):357-72. doi: 10.1104/pp.111.172684. Epub 2011 Mar 23.

14.

ELF3-PIF4 interaction regulates plant growth independently of the Evening Complex.

Nieto C, López-Salmerón V, Davière JM, Prat S.

Curr Biol. 2015 Jan 19;25(2):187-93. doi: 10.1016/j.cub.2014.10.070. Epub 2014 Dec 31.

15.

Insight into a Physiological Role for the EC Night-Time Repressor in the Arabidopsis Circadian Clock.

Mizuno T, Kitayama M, Takayama C, Yamashino T.

Plant Cell Physiol. 2015 Sep;56(9):1738-47. doi: 10.1093/pcp/pcv094. Epub 2015 Jun 24.

PMID:
26108788
16.

A Link between circadian-controlled bHLH factors and the APRR1/TOC1 quintet in Arabidopsis thaliana.

Yamashino T, Matsushika A, Fujimori T, Sato S, Kato T, Tabata S, Mizuno T.

Plant Cell Physiol. 2003 Jun;44(6):619-29.

PMID:
12826627
17.

Ambient temperature signal feeds into the circadian clock transcriptional circuitry through the EC night-time repressor in Arabidopsis thaliana.

Mizuno T, Nomoto Y, Oka H, Kitayama M, Takeuchi A, Tsubouchi M, Yamashino T.

Plant Cell Physiol. 2014 May;55(5):958-76. doi: 10.1093/pcp/pcu030. Epub 2014 Feb 4.

PMID:
24500967
18.

High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4.

Koini MA, Alvey L, Allen T, Tilley CA, Harberd NP, Whitelam GC, Franklin KA.

Curr Biol. 2009 Mar 10;19(5):408-13. doi: 10.1016/j.cub.2009.01.046. Epub 2009 Feb 26.

19.

Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors.

Lorrain S, Allen T, Duek PD, Whitelam GC, Fankhauser C.

Plant J. 2008 Jan;53(2):312-23. Epub 2007 Nov 28.

20.

The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels.

Leivar P, Monte E, Al-Sady B, Carle C, Storer A, Alonso JM, Ecker JR, Quail PH.

Plant Cell. 2008 Feb;20(2):337-52. doi: 10.1105/tpc.107.052142. Epub 2008 Feb 5.

Supplemental Content

Support Center