Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 4914

1.

The Li-ion rechargeable battery: a perspective.

Goodenough JB, Park KS.

J Am Chem Soc. 2013 Jan 30;135(4):1167-76. doi: 10.1021/ja3091438. Epub 2013 Jan 18.

PMID:
23294028
2.

Evolution of strategies for modern rechargeable batteries.

Goodenough JB.

Acc Chem Res. 2013 May 21;46(5):1053-61. doi: 10.1021/ar2002705. Epub 2012 Jul 2.

PMID:
22746097
3.

Nontraditional, Safe, High Voltage Rechargeable Cells of Long Cycle Life.

Braga MH, M Subramaniyam C, Murchison AJ, Goodenough JB.

J Am Chem Soc. 2018 May 23;140(20):6343-6352. doi: 10.1021/jacs.8b02322. Epub 2018 May 9.

PMID:
29688709
4.

Challenges and prospects of lithium-sulfur batteries.

Manthiram A, Fu Y, Su YS.

Acc Chem Res. 2013 May 21;46(5):1125-34. doi: 10.1021/ar300179v. Epub 2012 Oct 25.

PMID:
23095063
5.

Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.

Yu X, Manthiram A.

Acc Chem Res. 2017 Nov 21;50(11):2653-2660. doi: 10.1021/acs.accounts.7b00460. Epub 2017 Nov 7.

PMID:
29112389
6.

Combination of lightweight elements and nanostructured materials for batteries.

Chen J, Cheng F.

Acc Chem Res. 2009 Jun 16;42(6):713-23. doi: 10.1021/ar800229g.

PMID:
19354236
7.

Electrolyte stability determines scaling limits for solid-state 3D Li ion batteries.

Ruzmetov D, Oleshko VP, Haney PM, Lezec HJ, Karki K, Baloch KH, Agrawal AK, Davydov AV, Krylyuk S, Liu Y, Huang J, Tanase M, Cumings J, Talin AA.

Nano Lett. 2012 Jan 11;12(1):505-11. doi: 10.1021/nl204047z. Epub 2011 Dec 28.

PMID:
22185512
8.

Using waste Li ion batteries as cathodes in rechargeable Li-liquid batteries.

Chun J, Chung M, Lee J, Kim Y.

Phys Chem Chem Phys. 2013 May 21;15(19):7036-40. doi: 10.1039/c3cp00006k.

PMID:
23559258
9.

Rechargeable Ni-Li battery integrated aqueous/nonaqueous system.

Li H, Wang Y, Na H, Liu H, Zhou H.

J Am Chem Soc. 2009 Oct 28;131(42):15098-9. doi: 10.1021/ja906529g.

PMID:
19803514
10.

Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life.

Dong X, Chen L, Liu J, Haller S, Wang Y, Xia Y.

Sci Adv. 2016 Jan 22;2(1):e1501038. doi: 10.1126/sciadv.1501038. eCollection 2016 Jan.

11.

High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries.

Yang Y, Zheng G, Misra S, Nelson J, Toney MF, Cui Y.

J Am Chem Soc. 2012 Sep 19;134(37):15387-94. Epub 2012 Sep 10.

PMID:
22909273
12.

Electrospun FeS2@Carbon Fiber Electrode as a High Energy Density Cathode for Rechargeable Lithium Batteries.

Zhu Y, Fan X, Suo L, Luo C, Gao T, Wang C.

ACS Nano. 2016 Jan 26;10(1):1529-38. doi: 10.1021/acsnano.5b07081. Epub 2015 Dec 30.

PMID:
26700975
13.

A High-Energy-Density Potassium Battery with a Polymer-Gel Electrolyte and a Polyaniline Cathode.

Gao H, Xue L, Xin S, Goodenough JB.

Angew Chem Int Ed Engl. 2018 May 4;57(19):5449-5453. doi: 10.1002/anie.201802248. Epub 2018 Apr 6.

PMID:
29534324
14.

Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.

Tu Z, Nath P, Lu Y, Tikekar MD, Archer LA.

Acc Chem Res. 2015 Nov 17;48(11):2947-56. doi: 10.1021/acs.accounts.5b00427. Epub 2015 Oct 23.

PMID:
26496667
15.

Sustainable electrical energy storage through the ferrocene/ferrocenium redox reaction in aprotic electrolyte.

Zhao Y, Ding Y, Song J, Li G, Dong G, Goodenough JB, Yu G.

Angew Chem Int Ed Engl. 2014 Oct 6;53(41):11036-40. doi: 10.1002/anie.201406135. Epub 2014 Aug 27.

PMID:
25164770
16.

Functional materials for rechargeable batteries.

Cheng F, Liang J, Tao Z, Chen J.

Adv Mater. 2011 Apr 19;23(15):1695-715. doi: 10.1002/adma.201003587. Epub 2011 Mar 11. Review.

PMID:
21394791
17.

Activated Li2S as a High-Performance Cathode for Rechargeable Lithium-Sulfur Batteries.

Zu C, Klein M, Manthiram A.

J Phys Chem Lett. 2014 Nov 20;5(22):3986-91. doi: 10.1021/jz5021108. Epub 2014 Nov 3.

PMID:
26276482
18.

Mechanisms of Degradation and Strategies for the Stabilization of Cathode-Electrolyte Interfaces in Li-Ion Batteries.

Cabana J, Kwon BJ, Hu L.

Acc Chem Res. 2018 Feb 20;51(2):299-308. doi: 10.1021/acs.accounts.7b00482. Epub 2018 Jan 31.

PMID:
29384354
19.

Understanding the degradation mechanism of rechargeable lithium/sulfur cells: a comprehensive study of the sulfur-graphene oxide cathode after discharge-charge cycling.

Feng X, Song MK, Stolte WC, Gardenghi D, Zhang D, Sun X, Zhu J, Cairns EJ, Guo J.

Phys Chem Chem Phys. 2014 Aug 28;16(32):16931-40. doi: 10.1039/c4cp01341g.

20.

Aqueous electrochemistry of poly(vinylanthraquinone) for anode-active materials in high-density and rechargeable polymer/air batteries.

Choi W, Harada D, Oyaizu K, Nishide H.

J Am Chem Soc. 2011 Dec 14;133(49):19839-43. doi: 10.1021/ja206961t. Epub 2011 Nov 15.

PMID:
22011047

Supplemental Content

Support Center