Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 172

1.

Network inference analysis identifies an APRR2-like gene linked to pigment accumulation in tomato and pepper fruits.

Pan Y, Bradley G, Pyke K, Ball G, Lu C, Fray R, Marshall A, Jayasuta S, Baxter C, van Wijk R, Boyden L, Cade R, Chapman NH, Fraser PD, Hodgman C, Seymour GB.

Plant Physiol. 2013 Mar;161(3):1476-85. doi: 10.1104/pp.112.212654.

2.

Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening.

Ma N, Feng H, Meng X, Li D, Yang D, Wu C, Meng Q.

BMC Plant Biol. 2014 Dec 10;14:351. doi: 10.1186/s12870-014-0351-y.

3.

Tomato GOLDEN2-LIKE transcription factors reveal molecular gradients that function during fruit development and ripening.

Nguyen CV, Vrebalov JT, Gapper NE, Zheng Y, Zhong S, Fei Z, Giovannoni JJ.

Plant Cell. 2014 Feb;26(2):585-601. doi: 10.1105/tpc.113.118794.

4.

A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation.

Zhu M, Chen G, Zhou S, Tu Y, Wang Y, Dong T, Hu Z.

Plant Cell Physiol. 2014 Jan;55(1):119-35. doi: 10.1093/pcp/pct162.

PMID:
24265273
5.

The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening.

Bemer M, Karlova R, Ballester AR, Tikunov YM, Bovy AG, Wolters-Arts M, Rossetto Pde B, Angenent GC, de Maagd RA.

Plant Cell. 2012 Nov;24(11):4437-51. doi: 10.1105/tpc.112.103283.

6.

Chromoplast-specific carotenoid-associated protein appears to be important for enhanced accumulation of carotenoids in hp1 tomato fruits.

Kilambi HV, Kumar R, Sharma R, Sreelakshmi Y.

Plant Physiol. 2013 Apr;161(4):2085-101. doi: 10.1104/pp.112.212191.

7.

A non-climacteric fruit gene CaMADS-RIN regulates fruit ripening and ethylene biosynthesis in climacteric fruit.

Dong T, Chen G, Tian S, Xie Q, Yin W, Zhang Y, Hu Z.

PLoS One. 2014 Apr 21;9(4):e95559. doi: 10.1371/journal.pone.0095559.

8.

Non-climacteric fruit ripening in pepper: increased transcription of EIL-like genes normally regulated by ethylene.

Lee S, Chung EJ, Joung YH, Choi D.

Funct Integr Genomics. 2010 Mar;10(1):135-46. doi: 10.1007/s10142-009-0136-9.

PMID:
19756789
9.

A STAY-GREEN protein SlSGR1 regulates lycopene and β-carotene accumulation by interacting directly with SlPSY1 during ripening processes in tomato.

Luo Z, Zhang J, Li J, Yang C, Wang T, Ouyang B, Li H, Giovannoni J, Ye Z.

New Phytol. 2013 Apr;198(2):442-52. doi: 10.1111/nph.12175.

10.

Ectopic expression of a BZR1-1D transcription factor in brassinosteroid signalling enhances carotenoid accumulation and fruit quality attributes in tomato.

Liu L, Jia C, Zhang M, Chen D, Chen S, Guo R, Guo D, Wang Q.

Plant Biotechnol J. 2014 Jan;12(1):105-15. doi: 10.1111/pbi.12121.

11.

Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening.

Karlova R, Rosin FM, Busscher-Lange J, Parapunova V, Do PT, Fernie AR, Fraser PD, Baxter C, Angenent GC, de Maagd RA.

Plant Cell. 2011 Mar;23(3):923-41. doi: 10.1105/tpc.110.081273.

12.

Integrative comparative analyses of transcript and metabolite profiles from pepper and tomato ripening and development stages uncovers species-specific patterns of network regulatory behavior.

Osorio S, Alba R, Nikoloski Z, Kochevenko A, Fernie AR, Giovannoni JJ.

Plant Physiol. 2012 Aug;159(4):1713-29. doi: 10.1104/pp.112.199711.

13.

Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation.

Lee JM, Joung JG, McQuinn R, Chung MY, Fei Z, Tieman D, Klee H, Giovannoni J.

Plant J. 2012 Apr;70(2):191-204. doi: 10.1111/j.1365-313X.2011.04863.x.

14.

Suppression of tomato SlNAC1 transcription factor delays fruit ripening.

Meng C, Yang D, Ma X, Zhao W, Liang X, Ma N, Meng Q.

J Plant Physiol. 2016 Apr 1;193:88-96. doi: 10.1016/j.jplph.2016.01.014.

PMID:
26962710
15.
16.

Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato.

Liu Y, Roof S, Ye Z, Barry C, van Tuinen A, Vrebalov J, Bowler C, Giovannoni J.

Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9897-902.

17.

Functional characterization of a tomato COBRA-like gene functioning in fruit development and ripening.

Cao Y, Tang X, Giovannoni J, Xiao F, Liu Y.

BMC Plant Biol. 2012 Nov 10;12:211. doi: 10.1186/1471-2229-12-211.

18.

Whole transcriptome sequencing reveals genes involved in plastid/chloroplast division and development are regulated by the HP1/DDB1 at an early stage of tomato fruit development.

Tang X, Tang Z, Huang S, Liu J, Liu J, Shi W, Tian X, Li Y, Zhang D, Yang J, Gao Y, Zeng D, Hou P, Niu X, Cao Y, Li G, Li X, Xiao F, Liu Y.

Planta. 2013 Nov;238(5):923-36. doi: 10.1007/s00425-013-1942-9.

PMID:
23948801
19.

Physiological changes in fruit ripening caused by overexpression of tomato SlAN2, an R2R3-MYB factor.

Meng X, Yang D, Li X, Zhao S, Sui N, Meng Q.

Plant Physiol Biochem. 2015 Apr;89:24-30. doi: 10.1016/j.plaphy.2015.02.005.

PMID:
25698665
20.

A tomato MADS-box transcription factor, SlMADS1, acts as a negative regulator of fruit ripening.

Dong T, Hu Z, Deng L, Wang Y, Zhu M, Zhang J, Chen G.

Plant Physiol. 2013 Oct;163(2):1026-36. doi: 10.1104/pp.113.224436.

Items per page

Supplemental Content

Support Center