Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 137

1.

[Microarchitecture assessment of human trabecular bone: description of methods].

Chappard C.

Med Sci (Paris). 2012 Dec;28(12):1111-5. doi: 10.1051/medsci/20122812022. Review. French.

2.

Assessment of trabecular and cortical architecture and mechanical competence of bone by high-resolution peripheral computed tomography: comparison with transiliac bone biopsy.

Cohen A, Dempster DW, Müller R, Guo XE, Nickolas TL, Liu XS, Zhang XH, Wirth AJ, van Lenthe GH, Kohler T, McMahon DJ, Zhou H, Rubin MR, Bilezikian JP, Lappe JM, Recker RR, Shane E.

Osteoporos Int. 2010 Feb;21(2):263-73. doi: 10.1007/s00198-009-0945-7.

3.

Assessment of bone microarchitecture in chronic kidney disease: a comparison of 2D bone texture analysis and high-resolution peripheral quantitative computed tomography at the radius and tibia.

Bacchetta J, Boutroy S, Vilayphiou N, Fouque-Aubert A, Delmas PD, Lespessailles E, Fouque D, Chapurlat R.

Calcif Tissue Int. 2010 Nov;87(5):385-91. doi: 10.1007/s00223-010-9402-z.

PMID:
20711834
4.
5.

A longitudinal HR-pQCT study of alendronate treatment in postmenopausal women with low bone density: Relations among density, cortical and trabecular microarchitecture, biomechanics, and bone turnover.

Burghardt AJ, Kazakia GJ, Sode M, de Papp AE, Link TM, Majumdar S.

J Bone Miner Res. 2010 Dec;25(12):2558-71. doi: 10.1002/jbmr.157. Erratum in: J Bone Miner Res. 2011 Feb;26(2):439.

6.

In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography.

Boutroy S, Bouxsein ML, Munoz F, Delmas PD.

J Clin Endocrinol Metab. 2005 Dec;90(12):6508-15.

PMID:
16189253
7.

Longitudinal evaluation of the effects of alendronate on MRI bone microarchitecture in postmenopausal osteopenic women.

Folkesson J, Goldenstein J, Carballido-Gamio J, Kazakia G, Burghardt AJ, Rodriguez A, Krug R, de Papp AE, Link TM, Majumdar S.

Bone. 2011 Mar 1;48(3):611-21. doi: 10.1016/j.bone.2010.10.179.

8.

Assessment of trabecular bone structure comparing magnetic resonance imaging at 3 Tesla with high-resolution peripheral quantitative computed tomography ex vivo and in vivo.

Krug R, Carballido-Gamio J, Burghardt AJ, Kazakia G, Hyun BH, Jobke B, Banerjee S, Huber M, Link TM, Majumdar S.

Osteoporos Int. 2008 May;19(5):653-61.

PMID:
17992467
9.

Bone microarchitecture in ankylosing spondylitis and the association with bone mineral density, fractures, and syndesmophytes.

Klingberg E, Lorentzon M, Göthlin J, Mellström D, Geijer M, Ohlsson C, Atkinson EJ, Khosla S, Carlsten H, Forsblad-d'Elia H.

Arthritis Res Ther. 2013;15(6):R179.

10.

Characterizing microarchitectural changes at the distal radius and tibia in postmenopausal women using HR-pQCT.

Kawalilak CE, Johnston JD, Olszynski WP, Kontulainen SA.

Osteoporos Int. 2014 Aug;25(8):2057-66. doi: 10.1007/s00198-014-2719-0.

PMID:
24781379
11.

Individual trabecula segmentation (ITS)-based morphological analyses and microfinite element analysis of HR-pQCT images discriminate postmenopausal fragility fractures independent of DXA measurements.

Liu XS, Stein EM, Zhou B, Zhang CA, Nickolas TL, Cohen A, Thomas V, McMahon DJ, Cosman F, Nieves J, Shane E, Guo XE.

J Bone Miner Res. 2012 Feb;27(2):263-72. doi: 10.1002/jbmr.562.

12.

Effects of salmon calcitonin on trabecular microarchitecture as determined by magnetic resonance imaging: results from the QUEST study.

Chesnut CH 3rd, Majumdar S, Newitt DC, Shields A, Van Pelt J, Laschansky E, Azria M, Kriegman A, Olson M, Eriksen EF, Mindeholm L.

J Bone Miner Res. 2005 Sep;20(9):1548-61.

13.

Women with previous fragility fractures can be classified based on bone microarchitecture and finite element analysis measured with HR-pQCT.

Nishiyama KK, Macdonald HM, Hanley DA, Boyd SK.

Osteoporos Int. 2013 May;24(5):1733-40. doi: 10.1007/s00198-012-2160-1.

PMID:
23179565
14.

Automated simulation of areal bone mineral density assessment in the distal radius from high-resolution peripheral quantitative computed tomography.

Burghardt AJ, Kazakia GJ, Link TM, Majumdar S.

Osteoporos Int. 2009 Dec;20(12):2017-24. doi: 10.1007/s00198-009-0907-0.

15.

Microstructural parameters of bone evaluated using HR-pQCT correlate with the DXA-derived cortical index and the trabecular bone score in a cohort of randomly selected premenopausal women.

Popp AW, Buffat H, Eberli U, Lippuner K, Ernst M, Richards RG, Stadelmann VA, Windolf M.

PLoS One. 2014 Feb 13;9(2):e88946. doi: 10.1371/journal.pone.0088946. Erratum in: PLoS One. 2014;9(5):e98167.

16.

Differences in skeletal microarchitecture and strength in African-American and white women.

Putman MS, Yu EW, Lee H, Neer RM, Schindler E, Taylor AP, Cheston E, Bouxsein ML, Finkelstein JS.

J Bone Miner Res. 2013 Oct;28(10):2177-85. doi: 10.1002/jbmr.1953.

17.

[Bone microarchitecture].

Chappard D.

Bull Acad Natl Med. 2010 Nov;194(8):1469-80; discussion 1480-1. Review. French.

PMID:
22046710
18.

Accuracy of trabecular structure by HR-pQCT compared to gold standard μCT in the radius and tibia of patients with osteoporosis and long-term bisphosphonate therapy.

Krause M, Museyko O, Breer S, Wulff B, Duckstein C, Vettorazzi E, Glueer C, Püschel K, Engelke K, Amling M.

Osteoporos Int. 2014 May;25(5):1595-606. doi: 10.1007/s00198-014-2650-4.

PMID:
24566588
19.

Evaluation of bone microarchitecture by high-resolution peripheral quantitative computed tomography (HR-pQCT) in hemodialysis patients.

Negri AL, Del Valle EE, Zanchetta MB, Nobaru M, Silveira F, Puddu M, Barone R, Bogado CE, Zanchetta JR.

Osteoporos Int. 2012 Oct;23(10):2543-50. doi: 10.1007/s00198-011-1890-9.

PMID:
22234812
20.

Cortical measurements of the tibia from high resolution peripheral quantitative computed tomography images: a comparison with synchrotron radiation micro-computed tomography.

Ostertag A, Peyrin F, Fernandez S, Laredo JD, de Vernejoul MC, Chappard C.

Bone. 2014 Jun;63:7-14. doi: 10.1016/j.bone.2014.02.009.

PMID:
24582804
Items per page

Supplemental Content

Support Center