Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 77

1.

Lymphocytes with cytotoxic activity induce rapid microtubule axonal destabilization independently and before signs of neuronal death.

Miller NM, Shriver LP, Bodiga VL, Ray A, Basu S, Ahuja R, Jana A, Pahan K, Dittel BN.

ASN Neuro. 2013 Feb 6;5(1):e00105. doi: 10.1042/AN20120087.

3.

Cross-recognition of a myelin peptide by CD8+ T cells in the CNS is not sufficient to promote neuronal damage.

Reuter E, Gollan R, Grohmann N, Paterka M, Salmon H, Birkenstock J, Richers S, Leuenberger T, Brandt AU, Kuhlmann T, Zipp F, Siffrin V.

J Neurosci. 2015 Mar 25;35(12):4837-50. doi: 10.1523/JNEUROSCI.3380-14.2015.

4.

Role of Th17 cells in the pathogenesis of CNS inflammatory demyelination.

Rostami A, Ciric B.

J Neurol Sci. 2013 Oct 15;333(1-2):76-87. doi: 10.1016/j.jns.2013.03.002. Epub 2013 Apr 8. Review.

5.

Inhibition of calpain attenuates encephalitogenicity of MBP-specific T cells.

Guyton MK, Brahmachari S, Das A, Samantaray S, Inoue J, Azuma M, Ray SK, Banik NL.

J Neurochem. 2009 Sep;110(6):1895-907. doi: 10.1111/j.1471-4159.2009.06287.x. Epub 2009 Jul 17.

6.

In vivo imaging of partially reversible th17 cell-induced neuronal dysfunction in the course of encephalomyelitis.

Siffrin V, Radbruch H, Glumm R, Niesner R, Paterka M, Herz J, Leuenberger T, Lehmann SM, Luenstedt S, Rinnenthal JL, Laube G, Luche H, Lehnardt S, Fehling HJ, Griesbeck O, Zipp F.

Immunity. 2010 Sep 24;33(3):424-36. doi: 10.1016/j.immuni.2010.08.018.

7.
8.
9.

Functional and pathogenic differences of Th1 and Th17 cells in experimental autoimmune encephalomyelitis.

Domingues HS, Mues M, Lassmann H, Wekerle H, Krishnamoorthy G.

PLoS One. 2010 Nov 29;5(11):e15531. doi: 10.1371/journal.pone.0015531.

10.

MOG extracellular domain (p1-125) triggers elevated frequency of CXCR3+ CD4+ Th1 cells in the CNS of mice and induces greater incidence of severe EAE.

Mony JT, Khorooshi R, Owens T.

Mult Scler. 2014 Sep;20(10):1312-21. doi: 10.1177/1352458514524086. Epub 2014 Feb 19.

PMID:
24552747
11.

Swift entry of myelin-specific T lymphocytes into the central nervous system in spontaneous autoimmune encephalomyelitis.

Furtado GC, Marcondes MC, Latkowski JA, Tsai J, Wensky A, Lafaille JJ.

J Immunol. 2008 Oct 1;181(7):4648-55.

12.

Interferon regulatory factor (IRF) 3 is critical for the development of experimental autoimmune encephalomyelitis.

Fitzgerald DC, O'Brien K, Young A, Fonseca-Kelly Z, Rostami A, Gran B.

J Neuroinflammation. 2014 Jul 28;11:130. doi: 10.1186/1742-2094-11-130.

13.

Mannan-conjugated myelin peptides prime non-pathogenic Th1 and Th17 cells and ameliorate experimental autoimmune encephalomyelitis.

Tseveleki V, Tselios T, Kanistras I, Koutsoni O, Karamita M, Vamvakas SS, Apostolopoulos V, Dotsika E, Matsoukas J, Lassmann H, Probert L.

Exp Neurol. 2015 May;267:254-67. doi: 10.1016/j.expneurol.2014.10.019. Epub 2014 Oct 30.

PMID:
25447934
14.

Involvement of IFN-γ and perforin, but not Fas/FasL interactions in regulatory T cell-mediated suppression of experimental autoimmune encephalomyelitis.

Beeston T, Smith TR, Maricic I, Tang X, Kumar V.

J Neuroimmunol. 2010 Dec 15;229(1-2):91-7. doi: 10.1016/j.jneuroim.2010.07.007. Epub 2010 Aug 12.

15.

Emerging concepts in autoimmune encephalomyelitis beyond the CD4/T(H)1 paradigm.

Batoulis H, Addicks K, Kuerten S.

Ann Anat. 2010 Aug 20;192(4):179-93. doi: 10.1016/j.aanat.2010.06.006. Epub 2010 Jul 15. Review. Erratum in: Ann Anat. 2011 Feb 20;193(1):76-7.

PMID:
20692821
16.

Visualization of cytolytic T cell differentiation and granule exocytosis with T cells from mice expressing active fluorescent granzyme B.

Mouchacca P, Schmitt-Verhulst AM, Boyer C.

PLoS One. 2013 Jun 28;8(6):e67239. doi: 10.1371/journal.pone.0067239. Print 2013.

17.
18.

Licensing of myeloid cells promotes central nervous system autoimmunity and is controlled by peroxisome proliferator-activated receptor γ.

Hucke S, Floßdorf J, Grützke B, Dunay IR, Frenzel K, Jungverdorben J, Linnartz B, Mack M, Peitz M, Brüstle O, Kurts C, Klockgether T, Neumann H, Prinz M, Wiendl H, Knolle P, Klotz L.

Brain. 2012 May;135(Pt 5):1586-605. doi: 10.1093/brain/aws058. Epub 2012 Mar 24.

PMID:
22447120
19.

Disorganized microtubules underlie the formation of retraction bulbs and the failure of axonal regeneration.

Ertürk A, Hellal F, Enes J, Bradke F.

J Neurosci. 2007 Aug 22;27(34):9169-80.

20.

Chronological changes of CD4(+) and CD8(+) T cell subsets in the experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis.

Sonobe Y, Jin S, Wang J, Kawanokuchi J, Takeuchi H, Mizuno T, Suzumura A.

Tohoku J Exp Med. 2007 Dec;213(4):329-39.

Supplemental Content

Support Center