Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 105

1.

Transcriptome analysis suggests that starch synthesis may proceed via multiple metabolic routes in high yielding potato cultivars.

Kaminski KP, Petersen AH, Sønderkær M, Pedersen LH, Pedersen H, Feder C, Nielsen KL.

PLoS One. 2012;7(12):e51248. doi: 10.1371/journal.pone.0051248. Epub 2012 Dec 17.

2.
3.

The contribution of plastidial phosphoglucomutase to the control of starch synthesis within the potato tuber.

Fernie AR, Roessner U, Trethewey RN, Willmitzer L.

Planta. 2001 Jul;213(3):418-26.

PMID:
11506365
4.

Glucose 1-phosphate is efficiently taken up by potato (Solanum tuberosum) tuber parenchyma cells and converted to reserve starch granules.

Fettke J, Albrecht T, Hejazi M, Mahlow S, Nakamura Y, Steup M.

New Phytol. 2010 Feb;185(3):663-75. doi: 10.1111/j.1469-8137.2009.03126.x. Epub 2009 Dec 17.

5.

Starch biosynthesis from triose-phosphate in transgenic potato tubers expressing plastidic fructose-1,6-bisphosphatase.

Thorbjørnsen T, Asp T, Jørgensen K, Nielsen TH.

Planta. 2002 Feb;214(4):616-24.

PMID:
11925045
6.

The amyloplast proteome of potato tuber.

Stensballe A, Hald S, Bauw G, Blennow A, Welinder KG.

FEBS J. 2008 Apr;275(8):1723-41. doi: 10.1111/j.1742-4658.2008.06332.x. Epub 2008 Mar 7.

7.

Two carbon fluxes to reserve starch in potato (Solanum tuberosum L.) tuber cells are closely interconnected but differently modulated by temperature.

Fettke J, Leifels L, Brust H, Herbst K, Steup M.

J Exp Bot. 2012 May;63(8):3011-29. doi: 10.1093/jxb/ers014. Epub 2012 Feb 29.

10.
11.

Comparative transcriptome analysis coupled to X-ray CT reveals sucrose supply and growth velocity as major determinants of potato tuber starch biosynthesis.

Ferreira SJ, Senning M, Sonnewald S, Kessling PM, Goldstein R, Sonnewald U.

BMC Genomics. 2010 Feb 5;11:93. doi: 10.1186/1471-2164-11-93.

12.

Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield.

Baroja-Fernández E, Muñoz FJ, Montero M, Etxeberria E, Sesma MT, Ovecka M, Bahaji A, Ezquer I, Li J, Prat S, Pozueta-Romero J.

Plant Cell Physiol. 2009 Sep;50(9):1651-62. doi: 10.1093/pcp/pcp108. Epub 2009 Jul 16.

PMID:
19608713
13.

Decreased sucrose content triggers starch breakdown and respiration in stored potato tubers (Solanum tuberosum).

Hajirezaei MR, Börnke F, Peisker M, Takahata Y, Lerchl J, Kirakosyan A, Sonnewald U.

J Exp Bot. 2003 Jan;54(382):477-88.

PMID:
12508058
14.

Carbon assimilation and metabolism in potato leaves deficient in plastidial phosphoglucomutase.

Lytovchenko A, Bieberich K, Willmitzer L, Fernie AR.

Planta. 2002 Sep;215(5):802-11. Epub 2002 Jun 29.

PMID:
12244446
15.

Reduction of the plastidial phosphorylase in potato (Solanum tuberosum L.) reveals impact on storage starch structure during growth at low temperature.

Orawetz T, Malinova I, Orzechowski S, Fettke J.

Plant Physiol Biochem. 2016 Mar;100:141-149. doi: 10.1016/j.plaphy.2016.01.013. Epub 2016 Jan 20.

PMID:
26828405
17.

[Starch metabolism in potato tubers].

Czyzewska D, Marczewski W.

Postepy Biochem. 2009;55(4):441-6. Review. Polish.

PMID:
20201358
19.

Impact of elevated cytosolic and apoplastic invertase activity on carbon metabolism during potato tuber development.

Hajirezaei MR, Takahata Y, Trethewey RN, Willmitzer L, Sonnewald U.

J Exp Bot. 2000 Feb;51 Spec No:439-45.

PMID:
10938852
20.

Supplemental Content

Support Center