Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Mathematical modeling of the immune system recognition to mammary carcinoma antigen.

Bianca C, Chiacchio F, Pappalardo F, Pennisi M.

BMC Bioinformatics. 2012;13 Suppl 17:S21. doi: 10.1186/1471-2105-13-S17-S21. Epub 2012 Dec 13.

2.
3.

DNA vaccines targeting tumor antigens to B7 molecules on antigen-presenting cells induce protective antitumor immunity and delay onset of HER-2/Neu-driven mammary carcinoma.

Sloots A, Mastini C, Rohrbach F, Weth R, Curcio C, Burkhardt U, Jäger E, Forni G, Cavallo F, Wels WS.

Clin Cancer Res. 2008 Nov 1;14(21):6933-43. doi: 10.1158/1078-0432.CCR-08-1257.

4.

The collaboration of both humoral and cellular HER-2/neu-targeted immune responses is required for the complete eradication of HER-2/neu-expressing tumors.

Reilly RT, Machiels JP, Emens LA, Ercolini AM, Okoye FI, Lei RY, Weintraub D, Jaffee EM.

Cancer Res. 2001 Feb 1;61(3):880-3.

5.

Modeling the competition between lung metastases and the immune system using agents.

Pennisi M, Pappalardo F, Palladini A, Nicoletti G, Nanni P, Lollini PL, Motta S.

BMC Bioinformatics. 2010 Oct 15;11 Suppl 7:S13. doi: 10.1186/1471-2105-11-S7-S13.

6.

Granulocyte-macrophage colony-stimulating factor: an effective adjuvant for protein and peptide-based vaccines.

Disis ML, Bernhard H, Shiota FM, Hand SL, Gralow JR, Huseby ES, Gillis S, Cheever MA.

Blood. 1996 Jul 1;88(1):202-10.

7.

Comparison of various sources of antigen-presenting cells for the generation of GP2-tumor peptide specific cytotoxic T-lymphocytes.

Peiper M, Goedegebuure PS, Alldinger I, Knoefel WT, Izbicki JR, Eberlein TJ.

Anticancer Res. 2002 Nov-Dec;22(6A):3357-63.

PMID:
12530087
8.

In silico modeling and in vivo efficacy of cancer-preventive vaccinations.

Palladini A, Nicoletti G, Pappalardo F, Murgo A, Grosso V, Stivani V, Ianzano ML, Antognoli A, Croci S, Landuzzi L, De Giovanni C, Nanni P, Motta S, Lollini PL.

Cancer Res. 2010 Oct 15;70(20):7755-63. doi: 10.1158/0008-5472.CAN-10-0701. Epub 2010 Oct 5.

9.

Targeting of antigens to B lymphocytes via CD19 as a means for tumor vaccine development.

Ma Y, Xiang D, Sun J, Ding C, Liu M, Hu X, Li G, Kloecker G, Zhang HG, Yan J.

J Immunol. 2013 Jun 1;190(11):5588-99. doi: 10.4049/jimmunol.1203216. Epub 2013 Apr 29. Erratum in: J Immunol. 2016 May 1;196(9):3969.

10.

Development of immune-specific interaction potentials and their application in the multi-agent-system VaccImm.

Woelke AL, von Eichborn J, Murgueitio MS, Worth CL, Castiglione F, Preissner R.

PLoS One. 2011;6(8):e23257. doi: 10.1371/journal.pone.0023257. Epub 2011 Aug 17.

11.

Spontaneous mammary carcinomas fail to induce an immune response in syngeneic FVBN202 neu transgenic mice.

Kurt RA, Whitaker R, Baher A, Seung S, Urba WJ.

Int J Cancer. 2000 Sep 1;87(5):688-94.

12.

IL-15 augments antitumoral activity of an ErbB2/HER2 cancer vaccine targeted to professional antigen-presenting cells.

Burkhardt UE, Sloots A, Jakobi V, Wei WZ, Cavallo F, Kloke BP, Wels WS.

Cancer Immunol Immunother. 2012 Sep;61(9):1473-84. doi: 10.1007/s00262-012-1215-7. Epub 2012 Feb 14.

PMID:
22331080
13.

DNA vaccines targeting the encoded antigens to dendritic cells induce potent antitumor immunity in mice.

Cao J, Jin Y, Li W, Zhang B, He Y, Liu H, Xia N, Wei H, Yan J.

BMC Immunol. 2013 Aug 14;14:39. doi: 10.1186/1471-2172-14-39.

14.

T cells sensitized with breast tumor progenitor cell vaccine have therapeutic activity against spontaneous HER2/neu tumors.

Wang LX, Plautz GE.

Breast Cancer Res Treat. 2012 Jul;134(1):61-70. doi: 10.1007/s10549-011-1912-5. Epub 2011 Dec 16.

15.

Early role of CD4+ Th1 cells and antibodies in HER-2 adenovirus vaccine protection against autochthonous mammary carcinomas.

Park JM, Terabe M, Sakai Y, Munasinghe J, Forni G, Morris JC, Berzofsky JA.

J Immunol. 2005 Apr 1;174(7):4228-36.

16.

Danger signals and nonself entity of tumor antigen are both required for eliciting effective immune responses against HER-2/neu positive mammary carcinoma: implications for vaccine design.

Kmieciak M, Morales JK, Morales J, Bolesta E, Grimes M, Manjili MH.

Cancer Immunol Immunother. 2008 Sep;57(9):1391-8. doi: 10.1007/s00262-008-0475-8. Epub 2008 Feb 16.

17.

CCL19 as an adjuvant for intradermal gene gun immunization in a Her2/neu mouse tumor model: improved vaccine efficacy and a role for B cells as APC.

Nguyen-Hoai T, Hohn O, Vu MD, Baldenhofer G, Sayed Ahmed MS, Dörken B, Norley S, Lipp M, Pezzutto A, Westermann J.

Cancer Gene Ther. 2012 Dec;19(12):880-7. doi: 10.1038/cgt.2012.78. Epub 2012 Oct 26.

PMID:
23099886
18.

HER-2/neu is a tumor rejection target in tolerized HER-2/neu transgenic mice.

Reilly RT, Gottlieb MB, Ercolini AM, Machiels JP, Kane CE, Okoye FI, Muller WJ, Dixon KH, Jaffee EM.

Cancer Res. 2000 Jul 1;60(13):3569-76.

19.

Immune stimulatory antigen loaded particles combined with depletion of regulatory T-cells induce potent tumor specific immunity in a mouse model of melanoma.

Goforth R, Salem AK, Zhu X, Miles S, Zhang XQ, Lee JH, Sandler AD.

Cancer Immunol Immunother. 2009 Apr;58(4):517-30. doi: 10.1007/s00262-008-0574-6. Epub 2008 Aug 22.

PMID:
18719913
20.

An immunotherapy approach with dendritic cells genetically modified to express the tumor-associated antigen, HER2.

Nabekura T, Nagasawa T, Nakauchi H, Onodera M.

Cancer Immunol Immunother. 2008 May;57(5):611-22. Epub 2007 Sep 5.

PMID:
17786440

Supplemental Content

Support Center