Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 239

1.

Strategies for endogenous spinal cord repair: HPMA hydrogel to recruit migrating endogenous stem cells.

Espinosa-Jeffrey A, Oregel K, Wiggins L, Valera R, Bosnoyan K, Agbo C, Awosika O, Zhao PM, de Vellis J, Woerly S.

Adv Exp Med Biol. 2012;760:25-52.

PMID:
23281512
2.

Adjusting the chemical and physical properties of hydrogels leads to improved stem cell survival and tissue ingrowth in spinal cord injury reconstruction: a comparative study of four methacrylate hydrogels.

Hejčl A, Růžička J, Kapcalová M, Turnovcová K, Krumbholcová E, Přádný M, Michálek J, Cihlář J, Jendelová P, Syková E.

Stem Cells Dev. 2013 Oct 15;22(20):2794-805. doi: 10.1089/scd.2012.0616. Epub 2013 Jul 19.

PMID:
23750454
3.

Progenitors in the Ependyma of the Spinal Cord: A Potential Resource for Self-Repair After Injury.

Marichal N, Reali C, Rehermann MI, Trujillo-Cenóz O, Russo RE.

Adv Exp Med Biol. 2017;1015:241-264. doi: 10.1007/978-3-319-62817-2_13. Review.

PMID:
29080030
4.

Transplants and neurotrophic factors increase regeneration and recovery of function after spinal cord injury.

Bregman BS, Coumans JV, Dai HN, Kuhn PL, Lynskey J, McAtee M, Sandhu F.

Prog Brain Res. 2002;137:257-73. Review.

PMID:
12440372
5.

Co-transplantation of neural stem cells and Schwann cells within poly (L-lactic-co-glycolic acid) scaffolds facilitates axonal regeneration in hemisected rat spinal cord.

Xia L, Wan H, Hao SY, Li DZ, Chen G, Gao CC, Li JH, Yang F, Wang SG, Liu S.

Chin Med J (Engl). 2013 Mar;126(5):909-17.

PMID:
23489801
6.

The role of biodegradable engineered scaffolds seeded with Schwann cells for spinal cord regeneration.

Tabesh H, Amoabediny G, Nik NS, Heydari M, Yosefifard M, Siadat SO, Mottaghy K.

Neurochem Int. 2009 Feb;54(2):73-83. doi: 10.1016/j.neuint.2008.11.002. Epub 2008 Nov 25. Review.

PMID:
19084565
7.

New serum-derived albumin scaffold seeded with adipose-derived stem cells and olfactory ensheathing cells used to treat spinal cord injured rats.

Ferrero-Gutierrez A, Menendez-Menendez Y, Alvarez-Viejo M, Meana A, Otero J.

Histol Histopathol. 2013 Jan;28(1):89-100. doi: 10.14670/HH-28.89.

PMID:
23233062
8.
9.

Regeneration of long-tract axons through sites of spinal cord injury using templated agarose scaffolds.

Gros T, Sakamoto JS, Blesch A, Havton LA, Tuszynski MH.

Biomaterials. 2010 Sep;31(26):6719-29. doi: 10.1016/j.biomaterials.2010.04.035. Epub 2010 Jun 17.

PMID:
20619785
10.

Don't fence me in: harnessing the beneficial roles of astrocytes for spinal cord repair.

White RE, Jakeman LB.

Restor Neurol Neurosci. 2008;26(2-3):197-214. Review.

11.

Targeted Inhibition of Leucine-Rich Repeat and Immunoglobulin Domain-Containing Protein 1 in Transplanted Neural Stem Cells Promotes Neuronal Differentiation and Functional Recovery in Rats Subjected to Spinal Cord Injury.

Chen N, Cen JS, Wang J, Qin G, Long L, Wang L, Wei F, Xiang Q, Deng DY, Wan Y.

Crit Care Med. 2016 Mar;44(3):e146-57. doi: 10.1097/CCM.0000000000001351.

PMID:
26491860
12.

Growth factor treatment and genetic manipulation stimulate neurogenesis and oligodendrogenesis by endogenous neural progenitors in the injured adult spinal cord.

Ohori Y, Yamamoto S, Nagao M, Sugimori M, Yamamoto N, Nakamura K, Nakafuku M.

J Neurosci. 2006 Nov 15;26(46):11948-60.

13.

HPMA-RGD hydrogels seeded with mesenchymal stem cells improve functional outcome in chronic spinal cord injury.

Hejcl A, Sedý J, Kapcalová M, Toro DA, Amemori T, Lesný P, Likavcanová-Mašínová K, Krumbholcová E, Prádný M, Michálek J, Burian M, Hájek M, Jendelová P, Syková E.

Stem Cells Dev. 2010 Oct;19(10):1535-46. doi: 10.1089/scd.2009.0378.

PMID:
20053128
14.

Combination of bone marrow stromal cell transplantation with mobilization by granulocyte-colony stimulating factor promotes functional recovery after spinal cord transection.

Luo J, Zhang HT, Jiang XD, Xue S, Ke YQ.

Acta Neurochir (Wien). 2009 Nov;151(11):1483-92. doi: 10.1007/s00701-009-0402-6. Epub 2009 Jun 5.

PMID:
19499175
15.

Prevention of gliotic scar formation by NeuroGel allows partial endogenous repair of transected cat spinal cord.

Woerly S, Doan VD, Sosa N, de Vellis J, Espinosa-Jeffrey A.

J Neurosci Res. 2004 Jan 15;75(2):262-72.

PMID:
14705147
16.

Transplantation of adult rat spinal cord stem/progenitor cells for spinal cord injury.

Parr AM, Kulbatski I, Tator CH.

J Neurotrauma. 2007 May;24(5):835-45.

PMID:
17518538
17.

Transplantation of artificial neural construct partly improved spinal tissue repair and functional recovery in rats with spinal cord transection.

Du BL, Xiong Y, Zeng CG, He LM, Zhang W, Quan DP, Wu JL, Li Y, Zeng YS.

Brain Res. 2011 Jul 11;1400:87-98. doi: 10.1016/j.brainres.2011.05.019. Epub 2011 May 16.

PMID:
21658682
18.

Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats.

Liu J, Chen J, Liu B, Yang C, Xie D, Zheng X, Xu S, Chen T, Wang L, Zhang Z, Bai X, Jin D.

J Neurol Sci. 2013 Feb 15;325(1-2):127-36. doi: 10.1016/j.jns.2012.11.022. Epub 2013 Jan 11.

PMID:
23317924
19.

Tissue-Engineered Regeneration of Hemisected Spinal Cord Using Human Endometrial Stem Cells, Poly ε-Caprolactone Scaffolds, and Crocin as a Neuroprotective Agent.

Terraf P, Kouhsari SM, Ai J, Babaloo H.

Mol Neurobiol. 2017 Sep;54(7):5657-5667. doi: 10.1007/s12035-016-0089-7. Epub 2016 Sep 13.

PMID:
27624387
20.

Intervention strategies to enhance anatomical plasticity and recovery of function after spinal cord injury.

Bregman BS, Diener PS, McAtee M, Dai HN, James C.

Adv Neurol. 1997;72:257-75. Review.

PMID:
8993704

Supplemental Content

Support Center