Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.

Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy.

Liu Y, Ai K, Liu J, Deng M, He Y, Lu L.

Adv Mater. 2013 Mar 6;25(9):1353-9. doi: 10.1002/adma.201204683. Epub 2012 Dec 21. No abstract available.

PMID:
23280690
2.

Multifunctional nanoparticles for targeted chemophotothermal treatment of cancer cells.

Lee SM, Park H, Choi JW, Park YN, Yun CO, Yoo KH.

Angew Chem Int Ed Engl. 2011 Aug 8;50(33):7581-6. doi: 10.1002/anie.201101783. Epub 2011 Jun 30. No abstract available.

PMID:
21721086
3.

Gold nanoparticles-decorated silicon nanowires as highly efficient near-infrared hyperthermia agents for cancer cells destruction.

Su Y, Wei X, Peng F, Zhong Y, Lu Y, Su S, Xu T, Lee ST, He Y.

Nano Lett. 2012 Apr 11;12(4):1845-50. doi: 10.1021/nl204203t. Epub 2012 Mar 12.

PMID:
22401822
4.

Signal therapy of human pancreatic cancer and NF1-deficient breast cancer xenograft in mice by a combination of PP1 and GL-2003, anti-PAK1 drugs (Tyr-kinase inhibitors).

Hirokawa Y, Levitzki A, Lessene G, Baell J, Xiao Y, Zhu H, Maruta H.

Cancer Lett. 2007 Jan 8;245(1-2):242-51. Epub 2006 Mar 15.

PMID:
16540233
5.

Antitumor effect of paclitaxel-loaded PEGylated immunoliposomes against human breast cancer cells.

Yang T, Choi MK, Cui FD, Lee SJ, Chung SJ, Shim CK, Kim DD.

Pharm Res. 2007 Dec;24(12):2402-11. Epub 2007 Sep 9.

PMID:
17828616
6.

Copper selenide nanocrystals for photothermal therapy.

Hessel CM, Pattani VP, Rasch M, Panthani MG, Koo B, Tunnell JW, Korgel BA.

Nano Lett. 2011 Jun 8;11(6):2560-6. doi: 10.1021/nl201400z. Epub 2011 May 10.

7.

A photothermal cell viability-reporting theranostic nanoprobe for intraoperative optical ablation and tracking of tumors.

Wu S, Han S, Han J, Su X.

Chem Commun (Camb). 2014 Jul 28;50(59):8014-7. doi: 10.1039/c4cc01823k.

PMID:
24918105
8.

Na0.3WO3 nanorods: a multifunctional agent for in vivo dual-model imaging and photothermal therapy of cancer cells.

Zhang Y, Li B, Cao Y, Qin J, Peng Z, Xiao Z, Huang X, Zou R, Hu J.

Dalton Trans. 2015 Feb 14;44(6):2771-9. doi: 10.1039/c4dt02927e.

PMID:
25468402
9.

In vivo antitumor activity of MEK and phosphatidylinositol 3-kinase inhibitors in basal-like breast cancer models.

Hoeflich KP, O'Brien C, Boyd Z, Cavet G, Guerrero S, Jung K, Januario T, Savage H, Punnoose E, Truong T, Zhou W, Berry L, Murray L, Amler L, Belvin M, Friedman LS, Lackner MR.

Clin Cancer Res. 2009 Jul 15;15(14):4649-64. doi: 10.1158/1078-0432.CCR-09-0317. Epub 2009 Jun 30.

10.

Yolk-type Au@Fe3O4@C nanospheres for drug delivery, MRI and two-photon fluorescence imaging.

Zhou YM, Wang HB, Gong M, Sun ZY, Cheng K, Kong XK, Guo Z, Chen QW.

Dalton Trans. 2013 Jul 21;42(27):9906-13. doi: 10.1039/c3dt50789k. Epub 2013 May 21.

PMID:
23695613
11.

Antitumor activity of edotecarin in breast carcinoma models.

Ciomei M, Croci V, Stellari F, Amboldi N, Giavarini R, Pesenti E.

Cancer Chemother Pharmacol. 2007 Jul;60(2):229-35. Epub 2006 Nov 7.

PMID:
17089166
12.

Pseudolaric acid B, a novel microtubule-destabilizing agent that circumvents multidrug resistance phenotype and exhibits antitumor activity in vivo.

Wong VK, Chiu P, Chung SS, Chow LM, Zhao YZ, Yang BB, Ko BC.

Clin Cancer Res. 2005 Aug 15;11(16):6002-11.

13.

Synthesis of Iron Nanometallic Glasses and Their Application in Cancer Therapy by a Localized Fenton Reaction.

Zhang C, Bu W, Ni D, Zhang S, Li Q, Yao Z, Zhang J, Yao H, Wang Z, Shi J.

Angew Chem Int Ed Engl. 2016 Feb 5;55(6):2101-6. doi: 10.1002/anie.201510031. Epub 2016 Jan 6.

PMID:
26836344
14.

Preparation and characterization of PE38KDEL-loaded anti-HER2 nanoparticles for targeted cancer therapy.

Chen H, Gao J, Lu Y, Kou G, Zhang H, Fan L, Sun Z, Guo Y, Zhong Y.

J Control Release. 2008 Jun 24;128(3):209-16. doi: 10.1016/j.jconrel.2008.03.010. Epub 2008 Mar 19.

PMID:
18450313
15.

Poly (γ, L-glutamic acid)-cisplatin bioconjugate exhibits potent antitumor activity with low toxicity: a comparative study with clinically used platinum derivatives.

Feng Z, Lai Y, Ye H, Huang J, Xi XG, Wu Z.

Cancer Sci. 2010 Nov;101(11):2476-82. doi: 10.1111/j.1349-7006.2010.01708.x. Epub 2010 Sep 1.

16.

Disulfide bond reduction-triggered molecular hydrogels of folic acid-Taxol conjugates.

Yang C, Li D, Fengzhao Q, Wang L, Wang L, Yang Z.

Org Biomol Chem. 2013 Sep 25;11(40):6946-51. doi: 10.1039/c3ob40969d.

PMID:
23989242
17.

Systemic delivery of liposomal short-chain ceramide limits solid tumor growth in murine models of breast adenocarcinoma.

Stover TC, Sharma A, Robertson GP, Kester M.

Clin Cancer Res. 2005 May 1;11(9):3465-74.

18.

Antitumor and immunomodulatory properties of artemether and its ability to reduce CD4+ CD25+ FoxP3+ T reg cells in vivo.

Farsam V, Hassan ZM, Zavaran-Hosseini A, Noori S, Mahdavi M, Ranjbar M.

Int Immunopharmacol. 2011 Nov;11(11):1802-8. doi: 10.1016/j.intimp.2011.07.008. Epub 2011 Aug 6.

PMID:
21824530
19.

Luteinizing hormone-releasing hormone receptor-targeted deslorelin-docetaxel conjugate enhances efficacy of docetaxel in prostate cancer therapy.

Sundaram S, Durairaj C, Kadam R, Kompella UB.

Mol Cancer Ther. 2009 Jun;8(6):1655-65. doi: 10.1158/1535-7163.MCT-08-0988. Epub 2009 Jun 9.

20.

Farnesylthiosalicylic acid: inhibition of proliferation and enhancement of apoptosis of hormone-dependent breast cancer cells.

Santen RJ, Lynch AR, Neal LR, McPherson RA, Yue W.

Anticancer Drugs. 2006 Jan;17(1):33-40.

PMID:
16317288

Supplemental Content

Support Center