Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 77

1.

The spatial distribution of postblast RDX residue: forensic implications.

Abdul-Karim N, Morgan R, Binions R, Temple T, Harrison K.

J Forensic Sci. 2013 Mar;58(2):365-71. doi: 10.1111/1556-4029.12045. Epub 2012 Dec 27.

PMID:
23278671
2.

Morphological Variations of Explosive Residue Particles and Implications for Understanding Detonation Mechanisms.

Abdul-Karim N, Blackman CS, Gill PP, Morgan RM, Matjacic L, Webb R, Ng WH.

Anal Chem. 2016 Apr 5;88(7):3899-908. doi: 10.1021/acs.analchem.6b00080. Epub 2016 Mar 15.

PMID:
26938055
3.

Characteristics of Composition B particles from blow-in-place detonations.

Taylor S, Campbell E, Perovich L, Lever J, Pennington J.

Chemosphere. 2006 Nov;65(8):1405-13. Epub 2006 Jun 5.

PMID:
16750241
4.

The spatial distribution patterns of condensed phase post-blast explosive residues formed during detonation.

Abdul-Karim N, Blackman CS, Gill PP, Karu K.

J Hazard Mater. 2016 Oct 5;316:204-13. doi: 10.1016/j.jhazmat.2016.04.081. Epub 2016 May 6.

5.

RDX and TNT residues from live-fire and blow-in-place detonations.

Hewitt AD, Jenkins TF, Walsh ME, Walsh MR, Taylor S.

Chemosphere. 2005 Nov;61(6):888-94. Epub 2005 Jun 16.

PMID:
15964048
6.

Perchlorate contamination from the detonation of insensitive high-explosive rounds.

Walsh MR, Walsh ME, Ramsey CA, Brochu S, Thiboutot S, Ampleman G.

J Hazard Mater. 2013 Nov 15;262:228-33. doi: 10.1016/j.jhazmat.2013.08.045. Epub 2013 Aug 28.

PMID:
24035798
7.

An examination of the spatial distribution of the tissue fragments created during a single explosive attack.

DuBois E, Bowers K, Rando C.

Forensic Sci Int. 2017 Oct;279:122-129. doi: 10.1016/j.forsciint.2017.08.017. Epub 2017 Aug 24.

8.

Dissolution and sorption of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) residues from detonated mineral surfaces.

Jaramillo AM, Douglas TA, Walsh ME, Trainor TP.

Chemosphere. 2011 Aug;84(8):1058-65. doi: 10.1016/j.chemosphere.2011.04.066. Epub 2011 May 20.

PMID:
21601233
9.

Evaluation of a peat moss plus soybean oil (PMSO) technology for reducing explosive residue transport to groundwater at military training ranges under field conditions.

Fuller ME, Schaefer CE, Steffan RJ.

Chemosphere. 2009 Nov;77(8):1076-83. doi: 10.1016/j.chemosphere.2009.08.044. Epub 2009 Sep 17.

PMID:
19765798
10.

Estimation of explosive charge mass used for explosions on concrete surface for the forensic purpose.

Bjelovuk ID, Jaramaz S, Mickovic D.

Sci Justice. 2012 Mar;52(1):20-4. doi: 10.1016/j.scijus.2011.07.003. Epub 2011 Sep 1.

PMID:
22325907
11.

Collection of trace evidence of explosive residues from the skin in a death due to a disguised letter bomb. The synergy between confocal laser scanning microscope and inductively coupled plasma atomic emission spectrometer analyses.

Turillazzi E, Monaci F, Neri M, Pomara C, Riezzo I, Baroni D, Fineschi V.

Forensic Sci Int. 2010 Apr 15;197(1-3):e7-12. doi: 10.1016/j.forsciint.2009.12.012. Epub 2010 Jan 4.

PMID:
20047806
12.

Characterization of polymorphic states in energetic samples of 1,3,5-trinitro-1,3,5-triazine (RDX) fabricated using drop-on-demand inkjet technology.

Emmons ED, Farrell ME, Holthoff EL, Tripathi A, Green N, Moon RP, Guicheteau JA, Christesen SD, Pellegrino PM, Fountain AW 3rd.

Appl Spectrosc. 2012 Jun;66(6):628-35. doi: 10.1366/12-06608.

PMID:
22732532
13.

Multivariate analysis techniques in the forensics investigation of the postblast residues by means of Fourier transform-infrared spectroscopy.

Banas K, Banas A, Moser HO, Bahou M, Li W, Yang P, Cholewa M, Lim SK.

Anal Chem. 2010 Apr 1;82(7):3038-44. doi: 10.1021/ac100115r.

PMID:
20218700
14.

Identification of inorganic improvised explosive devices by analysis of postblast residues using portable capillary electrophoresis instrumentation and indirect photometric detection with a light-emitting diode.

Hutchinson JP, Evenhuis CJ, Johns C, Kazarian AA, Breadmore MC, Macka M, Hilder EF, Guijt RM, Dicinoski GW, Haddad PR.

Anal Chem. 2007 Sep 15;79(18):7005-13. Epub 2007 Aug 18.

PMID:
17705451
15.

Preparation of explosive nanoparticles in a porous chromium(III) oxide matrix: a first attempt to control the reactivity of explosives.

Comet M, Siegert B, Pichot V, Gibot P, Spitzer D.

Nanotechnology. 2008 Jul 16;19(28):285716. doi: 10.1088/0957-4484/19/28/285716. Epub 2008 Jun 3.

PMID:
21828750
16.

Composition of explosives by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.

Wu Z, Hendrickson CL, Rodgers RP, Marshall AG.

Anal Chem. 2002 Apr 15;74(8):1879-83.

PMID:
11985321
17.

Forensic Comparison of Soil Samples Using Nondestructive Elemental Analysis.

Uitdehaag S, Wiarda W, Donders T, Kuiper I.

J Forensic Sci. 2017 Jul;62(4):861-868. doi: 10.1111/1556-4029.13313. Epub 2016 Dec 1.

PMID:
27907233
18.

Probing royal demolition explosive (1,3,5-trinitro-1,3,5-triazocyclohexane) by low-energy electrons: Strong dissociative electron attachment near 0 eV.

Sulzer P, Mauracher A, Ferreira da Silva F, Denifl S, Märk TD, Probst M, Limão-Vieira P, Scheier P.

J Chem Phys. 2009 Oct 14;131(14):144304. doi: 10.1063/1.3230116.

PMID:
19831438
19.

The spatial and temporal distribution of pollen in a room: forensic implications.

Morgan RM, Allen E, King T, Bull PA.

Sci Justice. 2014 Jan;54(1):49-56. doi: 10.1016/j.scijus.2013.03.005. Epub 2013 Apr 30.

20.

Trace DNA analysis: do you know what your neighbour is doing? A multi-jurisdictional survey.

Raymond JJ, van Oorschot RA, Walsh SJ, Roux C.

Forensic Sci Int Genet. 2008 Jan;2(1):19-28. doi: 10.1016/j.fsigen.2007.07.001. Epub 2007 Nov 1.

PMID:
19083785

Supplemental Content

Support Center