Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 79

1.

The influence of internal rotational barriers and temperature on static and dynamic properties of bulk atactic polystyrene.

Xie SJ, Qian HJ, Lu ZY.

J Chem Phys. 2012 Dec 28;137(24):244903. doi: 10.1063/1.4772404.

PMID:
23277952
2.

Intramolecular caging in polybutadiene due to rotational barriers.

Krushev S, Paul W.

Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Feb;67(2 Pt 1):021806. Epub 2003 Feb 27.

PMID:
12636707
3.

Atomistic picture of isothermal volume relaxation behavior of atactic polystyrene glass provided by a molecular dynamics simulation.

Chen X, Ye Y, Hao L.

J Chem Phys. 2012 Jul 28;137(4):044907. doi: 10.1063/1.4737664.

PMID:
22852655
4.

Glass transition in 1,4-polybutadiene: Mode-coupling theory analysis of molecular dynamics simulations using a chemically realistic model.

Paul W, Bedrov D, Smith GD.

Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Aug;74(2 Pt 1):021501. Epub 2006 Aug 2.

PMID:
17025431
5.

Rotational relaxation in simple chain models.

Heffernan JV, Budzien J, Avila F, Dotson TC, Aston VJ, McCoy JD, Adolf DB.

J Chem Phys. 2007 Dec 7;127(21):214902.

PMID:
18067376
6.

Theory of dynamic barriers, activated hopping, and the glass transition in polymer melts.

Schweizer KS, Saltzman EJ.

J Chem Phys. 2004 Jul 22;121(4):1984-2000.

PMID:
15260751
7.
8.

Static and dynamic properties of supercooled thin polymer films.

Varnik F, Baschnagel J, Binder K.

Eur Phys J E Soft Matter. 2002 May;8(2):175-92.

PMID:
15010967
9.

MD simulation of concentrated polymer solutions: structural relaxation near the glass transition.

Peter S, Meyer H, Baschnagel J.

Eur Phys J E Soft Matter. 2009 Feb;28(2):147-58. doi: 10.1140/epje/i2008-10372-9.

PMID:
18850324
10.

Static and dynamic properties of model elastomer with various cross-linking densities: a molecular dynamics study.

Liu J, Cao D, Zhang L.

J Chem Phys. 2009 Jul 21;131(3):034903. doi: 10.1063/1.3179691.

PMID:
19624229
11.

Effects of pressure on structure and dynamics of model elastomers: a molecular dynamics study.

Liu J, Wu S, Cao D, Zhang L.

J Chem Phys. 2008 Oct 21;129(15):154905. doi: 10.1063/1.2996009.

PMID:
19045227
12.

Smoluchowski dynamics of the vnd/NK-2 homeodomain from Drosophila melanogaster: first-order mode-coupling approximation.

La Penna G, Mormino M, Pioli F, Perico A, Fioravanti R, Gruschus JM, Ferretti JA.

Biopolymers. 1999 Mar;49(3):235-54.

PMID:
9990841
13.

Rotational dynamics in supercooled water from nuclear spin relaxation and molecular simulations.

Qvist J, Mattea C, Sunde EP, Halle B.

J Chem Phys. 2012 May 28;136(20):204505. doi: 10.1063/1.4720941.

PMID:
22667569
14.

Static and dynamic length scales in supercooled liquids: insights from molecular dynamics simulations of water and tri-propylene oxide.

Klameth F, Henritzi P, Vogel M.

J Chem Phys. 2014 Apr 14;140(14):144501. doi: 10.1063/1.4870089.

PMID:
24735299
15.

The glass transition and relaxation behavior of bulk water and a possible relation to confined water.

Swenson J, Teixeira J.

J Chem Phys. 2010 Jan 7;132(1):014508. doi: 10.1063/1.3285286.

PMID:
20078173
16.

Activated hopping and dynamical fluctuation effects in hard sphere suspensions and fluids.

Saltzman EJ, Schweizer KS.

J Chem Phys. 2006 Jul 28;125(4):44509.

PMID:
16942158
17.

Molecular dynamics study on glass transitions in atactic-polypropylene bulk and freestanding thin films.

Yu X, Wu R, Yang X.

J Phys Chem B. 2010 Apr 22;114(15):4955-63. doi: 10.1021/jp910245k.

PMID:
20349930
18.

On the dynamics of ionic liquids: comparisons between electronically polarizable and nonpolarizable models II.

Yan T, Wang Y, Knox C.

J Phys Chem B. 2010 May 27;114(20):6886-904. doi: 10.1021/jp908914d.

PMID:
20443608
19.

Confinement effects on the slow dynamics of a supercooled polymer melt: Rouse modes and the incoherent scattering function.

Varnik F, Baschnagel J, Binder K, Mareschal M.

Eur Phys J E Soft Matter. 2003 Sep;12(1):167-71.

PMID:
15007696
20.

The properties of bio-energy transport and influence of structure nonuniformity and temperature of systems on energy transport along polypeptide chains.

Pang XF.

Prog Biophys Mol Biol. 2012 Jan;108(1-2):1-46. doi: 10.1016/j.pbiomolbio.2011.09.005. Epub 2011 Sep 17. Review.

PMID:
21951575

Supplemental Content

Support Center