Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 156

1.

The main byproducts and metabolic flux profiling of γ-PGA-producing strain B. subtilis ZJU-7 under different pH values.

Zhu F, Cai J, Wu X, Huang J, Huang L, Zhu J, Zheng Q, Cen P, Xu Z.

J Biotechnol. 2013 Mar 10;164(1):67-74. doi: 10.1016/j.jbiotec.2012.12.009. Epub 2012 Dec 27.

PMID:
23275182
2.

Effects of cultivation conditions on the production of gamma-PGA with Bacillus subtilis ZJU-7.

Chen J, Shi F, Zhang B, Zhu F, Cao W, Xu Z, Xu G, Cen P.

Appl Biochem Biotechnol. 2010 Jan;160(2):370-7. doi: 10.1007/s12010-008-8307-z. Epub 2008 Jul 31.

PMID:
18668374
3.

Enhanced poly(γ-glutamic acid) production by H2 O2 -induced reactive oxygen species in the fermentation of Bacillus subtilis NX-2.

Tang B, Zhang D, Li S, Xu Z, Feng X, Xu H.

Biotechnol Appl Biochem. 2016 Sep;63(5):625-632. doi: 10.1002/bab.1416. Epub 2015 Sep 21.

PMID:
26202728
4.

Metabolic studies of temperature control strategy on poly(γ-glutamic acid) production in a thermophilic strain Bacillus subtilis GXA-28.

Zeng W, Chen G, Wang Q, Zheng S, Shu L, Liang Z.

Bioresour Technol. 2014 Mar;155:104-10. doi: 10.1016/j.biortech.2013.12.086. Epub 2013 Dec 27.

PMID:
24434700
5.

Improvement of Bacillus subtilis for poly-γ-glutamic acid production by genome shuffling.

Zeng W, Chen G, Wu H, Wang J, Liu Y, Guo Y, Liang Z.

Microb Biotechnol. 2016 Nov;9(6):824-833. doi: 10.1111/1751-7915.12405. Epub 2016 Aug 26.

6.

Two-stage pH control strategy based on the pH preference of acetoin reductase regulates acetoin and 2,3-butanediol distribution in Bacillus subtilis.

Zhang X, Bao T, Rao Z, Yang T, Xu Z, Yang S, Li H.

PLoS One. 2014 Mar 7;9(3):e91187. doi: 10.1371/journal.pone.0091187. eCollection 2014.

7.

Regulation of the NADH pool and NADH/NADPH ratio redistributes acetoin and 2,3-butanediol proportion in Bacillus subtilis.

Bao T, Zhang X, Zhao X, Rao Z, Yang T, Yang S.

Biotechnol J. 2015 Aug;10(8):1298-306. doi: 10.1002/biot.201400577.

PMID:
26129872
8.

Contribution of glycerol on production of poly(gamma-Glutamic Acid) in Bacillus subtilis NX-2.

Wu Q, Xu H, Liang J, Yao J.

Appl Biochem Biotechnol. 2010 Jan;160(2):386-92. doi: 10.1007/s12010-008-8320-2. Epub 2008 Aug 12.

PMID:
18696262
9.

Engineered Serratia marcescens for efficient (3R)-acetoin and (2R,3R)-2,3-butanediol production.

Bai F, Dai L, Fan J, Truong N, Rao B, Zhang L, Shen Y.

J Ind Microbiol Biotechnol. 2015 May;42(5):779-86. doi: 10.1007/s10295-015-1598-5. Epub 2015 Feb 10. Erratum in: J Ind Microbiol Biotechnol. 2015 Jun;42(6):977. J Ind Microbiol Biotechnol. 2015 Apr;42(4):1610.

PMID:
25663525
10.

Improvement of poly(gamma-glutamic acid) biosynthesis and redistribution of metabolic flux with the presence of different additives in Bacillus subtilis CGMCC 0833.

Wu Q, Xu H, Shi N, Yao J, Li S, Ouyang P.

Appl Microbiol Biotechnol. 2008 Jun;79(4):527-35. doi: 10.1007/s00253-008-1462-x. Epub 2008 Apr 29.

PMID:
18443783
11.

Enhanced production of 2,3-butanediol by engineered Bacillus subtilis.

Biswas R, Yamaoka M, Nakayama H, Kondo T, Yoshida K, Bisaria VS, Kondo A.

Appl Microbiol Biotechnol. 2012 May;94(3):651-8. doi: 10.1007/s00253-011-3774-5. Epub 2012 Feb 25.

PMID:
22361854
12.

Knockout of pgdS and ggt genes improves γ-PGA yield in B. subtilis.

Scoffone V, Dondi D, Biino G, Borghese G, Pasini D, Galizzi A, Calvio C.

Biotechnol Bioeng. 2013 Jul;110(7):2006-12. doi: 10.1002/bit.24846. Epub 2013 Feb 15.

PMID:
23335395
13.

Improved poly-γ-glutamic acid production in Bacillus amyloliquefaciens by modular pathway engineering.

Feng J, Gu Y, Quan Y, Cao M, Gao W, Zhang W, Wang S, Yang C, Song C.

Metab Eng. 2015 Nov;32:106-15. doi: 10.1016/j.ymben.2015.09.011. Epub 2015 Sep 26.

PMID:
26410449
14.

Efficient production of poly-gamma-glutamic acid by Bacillus subtilis ZJU-7.

Shi F, Xu Z, Cen P.

Appl Biochem Biotechnol. 2006 Jun;133(3):271-82.

PMID:
16720907
15.

Metabolic engineering of Bacillus subtilis for enhanced production of acetoin.

Wang M, Fu J, Zhang X, Chen T.

Biotechnol Lett. 2012 Oct;34(10):1877-85. doi: 10.1007/s10529-012-0981-9. Epub 2012 Jun 20.

PMID:
22714279
16.

Conversion of agroindustrial residues for high poly(γ-glutamic acid) production by Bacillus subtilis NX-2 via solid-state fermentation.

Tang B, Xu H, Xu Z, Xu C, Xu Z, Lei P, Qiu Y, Liang J, Feng X.

Bioresour Technol. 2015 Apr;181:351-4. doi: 10.1016/j.biortech.2015.01.015. Epub 2015 Jan 12.

PMID:
25670398
17.

Mutation breeding of acetoin high producing Bacillus subtilis blocked in 2,3-butanediol dehydrogenase.

Zhang X, Zhang R, Yang T, Zhang J, Xu M, Li H, Xu Z, Rao Z.

World J Microbiol Biotechnol. 2013 Oct;29(10):1783-9. doi: 10.1007/s11274-013-1339-8. Epub 2013 Apr 3.

PMID:
23549901
18.

Chromosomal integration of a synthetic expression control sequence achieves poly-gamma-glutamate production in a Bacillus subtilis strain.

Yeh CM, Wang JP, Lo SC, Chan WC, Lin MY.

Biotechnol Prog. 2010 Jul-Aug;26(4):1001-7. doi: 10.1002/btpr.417.

PMID:
20564357
19.

Improvement of poly-γ-glutamic acid biosynthesis in a moving bed biofilm reactor by Bacillus subtilis NX-2.

Jiang Y, Tang B, Xu Z, Liu K, Xu Z, Feng X, Xu H.

Bioresour Technol. 2016 Oct;218:360-6. doi: 10.1016/j.biortech.2016.06.103. Epub 2016 Jun 27.

PMID:
27376835
20.

Efficient whole-cell biocatalyst for acetoin production with NAD+ regeneration system through homologous co-expression of 2,3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis.

Bao T, Zhang X, Rao Z, Zhao X, Zhang R, Yang T, Xu Z, Yang S.

PLoS One. 2014 Jul 18;9(7):e102951. doi: 10.1371/journal.pone.0102951. eCollection 2014.

Supplemental Content

Support Center