Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 91

1.

On the mechanism of formation of arterenone in insect cuticular hydrolyzates.

Sugumaran M, Abebe A, Oboite O, Zheng D.

Insect Biochem Mol Biol. 2013 Feb;43(2):209-18. doi: 10.1016/j.ibmb.2012.12.006. Epub 2012 Dec 26.

PMID:
23274965
3.

Reexamination of the mechanisms of oxidative transformation of the insect cuticular sclerotizing precursor, 1,2-dehydro-N-acetyldopamine.

Abebe A, Zheng D, Evans J, Sugumaran M.

Insect Biochem Mol Biol. 2010 Sep;40(9):650-9. doi: 10.1016/j.ibmb.2010.06.005. Epub 2010 Jun 17.

PMID:
20600898
4.

Mechanism of activation of 1,2-dehydro-N-acetyldopamine for cuticular sclerotization.

Sugumaran M, Schinkmann K, Dali H.

Arch Insect Biochem Physiol. 1990;14(2):93-109.

PMID:
2134172
5.
6.

Unraveling complex molecular transformations of N-β-alanyldopamine that account for brown coloration of insect cuticle.

Barek H, Evans J, Sugumaran M.

Rapid Commun Mass Spectrom. 2017 Aug 30;31(16):1363-1373. doi: 10.1002/rcm.7914.

PMID:
28557057
8.

Aspects of cuticular sclerotization in the locust, Scistocerca gregaria, and the beetle, Tenebrio molitor.

Andersen SO, Roepstorff P.

Insect Biochem Mol Biol. 2007 Mar;37(3):223-34. Epub 2006 Nov 24.

PMID:
17296497
9.
10.

Mass spectrometric analysis of catechol-histidine adducts from insect cuticle.

Kerwin JL, Turecek F, Xu R, Kramer KJ, Hopkins TL, Gatlin CL, Yates JR 3rd.

Anal Biochem. 1999 Mar 15;268(2):229-37.

PMID:
10075812
11.

Quantitative determination of catecholic degradation products from insect sclerotized cuticles.

Andersen SO.

Insect Biochem Mol Biol. 2008 Sep;38(9):877-82. doi: 10.1016/j.ibmb.2008.06.003. Epub 2008 Jul 15.

PMID:
18675913
12.
13.

Oxidative transformation of tunichromes - Model studies with 1,2-dehydro-N-acetyldopamine and N-acetylcysteine.

Kuang QF, Abebe A, Evans J, Sugumaran M.

Bioorg Chem. 2017 Aug;73:53-62. doi: 10.1016/j.bioorg.2017.05.013. Epub 2017 Jun 1.

PMID:
28605673
14.

Model reactions for insect cuticle sclerotization: cross-linking of recombinant cuticular proteins upon their laccase-catalyzed oxidative conjugation with catechols.

Suderman RJ, Dittmer NT, Kanost MR, Kramer KJ.

Insect Biochem Mol Biol. 2006 Apr;36(4):353-65. Epub 2006 Jan 19. Erratum in: Insect Biochem Mol Biol. 2006 Jul;36(7):610-1.

PMID:
16551549
15.

1,2-dehydro-N-beta-alanyldopamine as a new intermediate in insect cuticular sclerotization.

Ricketts D, Sugumaran M.

J Biol Chem. 1994 Sep 2;269(35):22217-21.

16.
17.

On the mechanism of side chain oxidation of N-beta-alanyldopamine by cuticular enzymes from Sarcophaga bullata.

Sugumaran M, Saul SJ, Dali H.

Arch Insect Biochem Physiol. 1990;15(4):255-69.

PMID:
2134026
19.

Involvement of tyrosine residues, N-terminal amino acids, and beta-alanine in insect cuticular sclerotization.

Andersen SO.

Insect Biochem Mol Biol. 2007 Sep;37(9):969-74. Epub 2007 May 10.

PMID:
17681236

Supplemental Content

Support Center