Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 177

1.

Getting the most out of parasitic helminth transcriptomes using HelmDB: implications for biology and biotechnology.

Mangiola S, Young ND, Korhonen P, Mondal A, Scheerlinck JP, Sternberg PW, Cantacessi C, Hall RS, Jex AR, Gasser RB.

Biotechnol Adv. 2013 Dec;31(8):1109-19. doi: 10.1016/j.biotechadv.2012.12.004. Epub 2012 Dec 21. Review.

PMID:
23266393
2.

Improved insights into the transcriptomes of the human hookworm Necator americanus--fundamental and biotechnological implications.

Rabelo EM, Hall RS, Loukas A, Cooper L, Hu M, Ranganathan S, Gasser RB.

Biotechnol Adv. 2009 Mar-Apr;27(2):122-32. doi: 10.1016/j.biotechadv.2008.10.002. Epub 2008 Oct 18. Review.

PMID:
18977428
3.

Making sense of genomes of parasitic worms: Tackling bioinformatic challenges.

Korhonen PK, Young ND, Gasser RB.

Biotechnol Adv. 2016 Sep-Oct;34(5):663-86. doi: 10.1016/j.biotechadv.2016.03.001. Epub 2016 Mar 5. Review.

PMID:
26956711
4.

Insights into the immuno-molecular biology of Angiostrongylus vasorum through transcriptomics--prospects for new interventions.

Ansell BR, Schnyder M, Deplazes P, Korhonen PK, Young ND, Hall RS, Mangiola S, Boag PR, Hofmann A, Sternberg PW, Jex AR, Gasser RB.

Biotechnol Adv. 2013 Dec;31(8):1486-500. doi: 10.1016/j.biotechadv.2013.07.006. Epub 2013 Jul 27. Review.

PMID:
23895945
5.

Helminth secretome database (HSD): a collection of helminth excretory/secretory proteins predicted from expressed sequence tags (ESTs).

Garg G, Ranganathan S.

BMC Genomics. 2012;13 Suppl 7:S8. doi: 10.1186/1471-2164-13-S7-S8. Epub 2012 Dec 13.

6.

Elucidating the transcriptome of Fasciola hepatica - a key to fundamental and biotechnological discoveries for a neglected parasite.

Young ND, Hall RS, Jex AR, Cantacessi C, Gasser RB.

Biotechnol Adv. 2010 Mar-Apr;28(2):222-31. doi: 10.1016/j.biotechadv.2009.12.003. Epub 2009 Dec 16. Review.

PMID:
20006979
7.

In silico secretome analysis approach for next generation sequencing transcriptomic data.

Garg G, Ranganathan S.

BMC Genomics. 2011 Nov 30;12 Suppl 3:S14. doi: 10.1186/1471-2164-12-S3-S14. Epub 2011 Nov 30.

8.

Key strongylid nematodes of animals - Impact of next-generation transcriptomics on systems biology and biotechnology.

Cantacessi C, Campbell BE, Gasser RB.

Biotechnol Adv. 2012 May-Jun;30(3):469-88. doi: 10.1016/j.biotechadv.2011.08.016. Epub 2011 Aug 26. Review.

PMID:
21889976
9.

TIMPs of parasitic helminths - a large-scale analysis of high-throughput sequence datasets.

Cantacessi C, Hofmann A, Pickering D, Navarro S, Mitreva M, Loukas A.

Parasit Vectors. 2013 May 30;6:156. doi: 10.1186/1756-3305-6-156.

10.

Functional genomics approaches in parasitic helminths.

Hagen J, Lee EF, Fairlie WD, Kalinna BH.

Parasite Immunol. 2012 Feb-Mar;34(2-3):163-82. doi: 10.1111/j.1365-3024.2011.01306.x. Review.

11.

An analysis of the transcriptome of Teladorsagia circumcincta: its biological and biotechnological implications.

Menon R, Gasser RB, Mitreva M, Ranganathan S.

BMC Genomics. 2012;13 Suppl 7:S10. doi: 10.1186/1471-2164-13-S7-S10. Epub 2012 Dec 13.

12.

Toward next-generation sequencing of mitochondrial genomes--focus on parasitic worms of animals and biotechnological implications.

Jex AR, Littlewood DT, Gasser RB.

Biotechnol Adv. 2010 Jan-Feb;28(1):151-9. doi: 10.1016/j.biotechadv.2009.11.002. Review. Erratum in: Biotechnol Adv. 2010 Mar-Apr;28(2):283.

PMID:
19913084
13.

HelmCoP: an online resource for helminth functional genomics and drug and vaccine targets prioritization.

Abubucker S, Martin J, Taylor CM, Mitreva M.

PLoS One. 2011;6(7):e21832. doi: 10.1371/journal.pone.0021832. Epub 2011 Jul 8.

14.

NEMBASE4: the nematode transcriptome resource.

Elsworth B, Wasmuth J, Blaxter M.

Int J Parasitol. 2011 Jul;41(8):881-94. doi: 10.1016/j.ijpara.2011.03.009. Epub 2011 Apr 21.

15.

Transcriptome analyses reveal protein and domain families that delineate stage-related development in the economically important parasitic nematodes, Ostertagia ostertagi and Cooperia oncophora.

Heizer E, Zarlenga DS, Rosa B, Gao X, Gasser RB, De Graef J, Geldhof P, Mitreva M.

BMC Genomics. 2013 Feb 22;14:118. doi: 10.1186/1471-2164-14-118.

16.

Cracking the nodule worm code advances knowledge of parasite biology and biotechnology to tackle major diseases of livestock.

Tyagi R, Joachim A, Ruttkowski B, Rosa BA, Martin JC, Hallsworth-Pepin K, Zhang X, Ozersky P, Wilson RK, Ranganathan S, Sternberg PW, Gasser RB, Mitreva M.

Biotechnol Adv. 2015 Nov 1;33(6 Pt 1):980-91. doi: 10.1016/j.biotechadv.2015.05.004. Epub 2015 May 27. Review.

17.

Impact of next-generation technologies on exploring socioeconomically important parasites and developing new interventions.

Cantacessi C, Hofmann A, Campbell BE, Gasser RB.

Methods Mol Biol. 2015;1247:437-74. doi: 10.1007/978-1-4939-2004-4_31. Review.

PMID:
25399114
18.

The transcriptome of Echinostoma caproni adults: further characterization of the secretome and identification of new potential drug targets.

Garg G, Bernal D, Trelis M, Forment J, Ortiz J, Valero ML, Pedrola L, Martinez-Blanch J, Esteban JG, Ranganathan S, Toledo R, Marcilla A.

J Proteomics. 2013 Aug 26;89:202-14. doi: 10.1016/j.jprot.2013.06.017. Epub 2013 Jun 21.

PMID:
23796492
19.

Bioinformatics meets parasitology.

Cantacessi C, Campbell BE, Jex AR, Young ND, Hall RS, Ranganathan S, Gasser RB.

Parasite Immunol. 2012 May;34(5):265-75. doi: 10.1111/j.1365-3024.2011.01304.x. Review.

20.

Serine/threonine phosphatases in socioeconomically important parasitic nematodes--prospects as novel drug targets?

Campbell BE, Hofmann A, McCluskey A, Gasser RB.

Biotechnol Adv. 2011 Jan-Feb;29(1):28-39. doi: 10.1016/j.biotechadv.2010.08.008. Epub 2010 Aug 21. Review.

PMID:
20732402

Supplemental Content

Support Center