Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 93

1.

Dynamics and precision in retinoic acid morphogen gradients.

Schilling TF, Nie Q, Lander AD.

Curr Opin Genet Dev. 2012 Dec;22(6):562-9. doi: 10.1016/j.gde.2012.11.012. Epub 2012 Dec 19. Review.

2.

Cellular retinoic acid-binding proteins are essential for hindbrain patterning and signal robustness in zebrafish.

Cai AQ, Radtke K, Linville A, Lander AD, Nie Q, Schilling TF.

Development. 2012 Jun;139(12):2150-5. doi: 10.1242/dev.077065.

3.

Cyp26 enzymes generate the retinoic acid response pattern necessary for hindbrain development.

Hernandez RE, Putzke AP, Myers JP, Margaretha L, Moens CB.

Development. 2007 Jan;134(1):177-87.

4.

Noise modulation in retinoic acid signaling sharpens segmental boundaries of gene expression in the embryonic zebrafish hindbrain.

Sosnik J, Zheng L, Rackauckas CV, Digman M, Gratton E, Nie Q, Schilling TF.

Elife. 2016 Apr 12;5:e14034. doi: 10.7554/eLife.14034.

5.

Visualizing retinoic acid morphogen gradients.

Schilling TF, Sosnik J, Nie Q.

Methods Cell Biol. 2016;133:139-63. doi: 10.1016/bs.mcb.2016.03.003. Epub 2016 Apr 18.

6.

Visualization of an endogenous retinoic acid gradient across embryonic development.

Shimozono S, Iimura T, Kitaguchi T, Higashijima S, Miyawaki A.

Nature. 2013 Apr 18;496(7445):363-6. doi: 10.1038/nature12037. Epub 2013 Apr 7.

PMID:
23563268
7.

Acquisition of retinoic acid signaling pathway and innovation of the chordate body plan.

Fujiwara S, Kawamura K.

Zoolog Sci. 2003 Jul;20(7):809-18. Review.

PMID:
12867709
8.

Enzymatic Metabolism of Vitamin A in Developing Vertebrate Embryos.

Metzler MA, Sandell LL.

Nutrients. 2016 Dec 15;8(12). pii: E812. Review.

9.

Noise drives sharpening of gene expression boundaries in the zebrafish hindbrain.

Zhang L, Radtke K, Zheng L, Cai AQ, Schilling TF, Nie Q.

Mol Syst Biol. 2012;8:613. doi: 10.1038/msb.2012.45.

10.

Graded retinoid responses in the developing hindbrain.

Godsave SF, Koster CH, Getahun A, Mathu M, Hooiveld M, van der Wees J, Hendriks J, Durston AJ.

Dev Dyn. 1998 Sep;213(1):39-49.

11.

Molecular approaches to vertebrate limb morphogenesis.

Smith SM, Pang K, Sundin O, Wedden SE, Thaller C, Eichele G.

Development. 1989;107 Suppl:121-31. Review.

PMID:
2576867
12.

Travelling gradients in interacting morphogen systems.

Baker RE, Maini PK.

Math Biosci. 2007 Sep;209(1):30-50. Epub 2007 Feb 8.

PMID:
17363011
13.

Independent roles for retinoic acid in segmentation and neuronal differentiation in the zebrafish hindbrain.

Linville A, Gumusaneli E, Chandraratna RA, Schilling TF.

Dev Biol. 2004 Jun 1;270(1):186-99.

14.

vhnf1 integrates global RA patterning and local FGF signals to direct posterior hindbrain development in zebrafish.

Hernandez RE, Rikhof HA, Bachmann R, Moens CB.

Development. 2004 Sep;131(18):4511-20.

15.

How degrading: Cyp26s in hindbrain development.

White RJ, Schilling TF.

Dev Dyn. 2008 Oct;237(10):2775-90. doi: 10.1002/dvdy.21695. Review.

16.
17.

Direct crossregulation between retinoic acid receptor {beta} and Hox genes during hindbrain segmentation.

Serpente P, Tümpel S, Ghyselinck NB, Niederreither K, Wiedemann LM, Dollé P, Chambon P, Krumlauf R, Gould AP.

Development. 2005 Feb;132(3):503-13. Epub 2005 Jan 5.

18.

The Meis3 protein and retinoid signaling interact to pattern the Xenopus hindbrain.

Dibner C, Elias S, Ofir R, Souopgui J, Kolm PJ, Sive H, Pieler T, Frank D.

Dev Biol. 2004 Jul 1;271(1):75-86.

19.

Combinatorial roles for zebrafish retinoic acid receptors in the hindbrain, limbs and pharyngeal arches.

Linville A, Radtke K, Waxman JS, Yelon D, Schilling TF.

Dev Biol. 2009 Jan 1;325(1):60-70. doi: 10.1016/j.ydbio.2008.09.022. Epub 2008 Oct 2.

20.

Molecular mechanisms of segmental patterning in the vertebrate hindbrain.

Wilkinson DG.

Perspect Dev Neurobiol. 1993;1(3):117-25. Review.

PMID:
7916256

Supplemental Content

Support Center