Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 127

1.

Influence of nitrogen supply on the production of higher alcohols/esters and expression of flavour-related genes in cachaça fermentation.

Vidal EE, de Billerbeck GM, Simões DA, Schuler A, François JM, de Morais MA Jr.

Food Chem. 2013 May 1;138(1):701-8. doi: 10.1016/j.foodchem.2012.10.147. Epub 2012 Nov 10. Erratum in: Food Chem. 2013 Dec 15;141(4):4101.

PMID:
23265543
2.

Production of sensory compounds by means of the yeast Dekkera bruxellensis in different nitrogen sources with the prospect of producing cachaça.

Castro Parente D, Vidal EE, Leite FC, de Barros Pita W, de Morais MA Jr.

Yeast. 2015 Jan;32(1):77-87. doi: 10.1002/yea.3051. Epub 2014 Dec 2.

3.
4.

Strategies to select yeast starters cultures for production of flavor compounds in cachaça fermentations.

de Souza AP, Vicente Mde A, Klein RC, Fietto LG, Coutrim MX, de Cássia Franco Afonso RJ, Araújo LD, da Silva PH, Bouillet LE, Castro IM, Brandão RL.

Antonie Van Leeuwenhoek. 2012 Feb;101(2):379-92. doi: 10.1007/s10482-011-9643-5. Epub 2011 Sep 20.

PMID:
21932076
5.

Features of Saccharomyces cerevisiae as a culture starter for the production of the distilled sugar cane beverage, cachaça in Brazil.

Campos CR, Silva CF, Dias DR, Basso LC, Amorim HV, Schwan RF.

J Appl Microbiol. 2010 Jun;108(6):1871-9. doi: 10.1111/j.1365-2672.2009.04587.x. Epub 2009 Oct 14.

6.

Biochemical and molecular characterization of Saccharomyces cerevisiae strains obtained from sugar-cane juice fermentations and their impact in cachaça production.

Oliveira VA, Vicente MA, Fietto LG, Castro IM, Coutrim MX, Schüller D, Alves H, Casal M, Santos JO, Araújo LD, da Silva PH, Brandão RL.

Appl Environ Microbiol. 2008 Feb;74(3):693-701. Epub 2007 Dec 7.

7.

Assimilable nitrogen utilisation and production of volatile and non-volatile compounds in chemically defined medium by Saccharomyces cerevisiae wine yeasts.

Vilanova M, Ugliano M, Varela C, Siebert T, Pretorius IS, Henschke PA.

Appl Microbiol Biotechnol. 2007 Nov;77(1):145-57. Epub 2007 Sep 11.

PMID:
17846763
8.

Isolation of Saccharomyces cerevisiae strains producing higher levels of flavoring compounds for production of "cachaça" the Brazilian sugarcane spirit.

Vicente MA, Fietto LG, Castro IM, dos Santos AN, Coutrim MX, Brandão RL.

Int J Food Microbiol. 2006 Apr 15;108(1):51-9. Epub 2006 Feb 14.

PMID:
16481057
9.

Transcriptome analysis identifies genes involved in ethanol response of Saccharomyces cerevisiae in Agave tequilana juice.

Ramirez-Córdova J, Drnevich J, Madrigal-Pulido JA, Arrizon J, Allen K, Martínez-Velázquez M, Alvarez-Maya I.

Antonie Van Leeuwenhoek. 2012 Aug;102(2):247-55. doi: 10.1007/s10482-012-9733-z. Epub 2012 Apr 26.

PMID:
22535436
10.

Impact of assimilable nitrogen availability in glucose uptake kinetics in Saccharomyces cerevisiae during alcoholic fermentation.

Palma M, Madeira SC, Mendes-Ferreira A, Sá-Correia I.

Microb Cell Fact. 2012 Jul 30;11:99. doi: 10.1186/1475-2859-11-99.

11.

The effects of co-culturing non-Saccharomyces yeasts with S. cerevisiae on the sugar cane spirit (cachaça) fermentation process.

Duarte WF, Amorim JC, Schwan RF.

Antonie Van Leeuwenhoek. 2013 Jan;103(1):175-94. doi: 10.1007/s10482-012-9798-8. Epub 2012 Aug 22.

PMID:
22911390
12.

Mutation breeding of Saccharomyces cerevisiae with lower methanol content and the effects of pectinase, cellulase and glycine in sugar cane spirits.

Liang MH, Liang YJ, Wu XN, Zhou SS, Jiang JG.

J Sci Food Agric. 2015 Jul;95(9):1949-55. doi: 10.1002/jsfa.6908. Epub 2014 Nov 10.

PMID:
25204269
13.

Effect of dilution rate and nutrients addition on the fermentative capability and synthesis of aromatic compounds of two indigenous strains of Saccharomyces cerevisiae in continuous cultures fed with Agave tequilana juice.

Morán-Marroquín GA, Córdova J, Valle-Rodríguez JO, Estarrón-Espinosa M, Díaz-Montaño DM.

Int J Food Microbiol. 2011 Nov 15;151(1):87-92. doi: 10.1016/j.ijfoodmicro.2011.08.008. Epub 2011 Aug 22.

PMID:
21903290
14.

The effect of increased yeast alcohol acetyltransferase and esterase activity on the flavour profiles of wine and distillates.

Lilly M, Bauer FF, Lambrechts MG, Swiegers JH, Cozzolino D, Pretorius IS.

Yeast. 2006 Jul 15;23(9):641-59.

15.

Monitoring the influence of high-gravity brewing and fermentation temperature on flavour formation by analysis of gene expression levels in brewing yeast.

Saerens SM, Verbelen PJ, Vanbeneden N, Thevelein JM, Delvaux FR.

Appl Microbiol Biotechnol. 2008 Oct;80(6):1039-51. doi: 10.1007/s00253-008-1645-5. Epub 2008 Aug 27.

PMID:
18751696
16.

Functional genomic analysis of a commercial wine strain of Saccharomyces cerevisiae under differing nitrogen conditions.

Backhus LE, DeRisi J, Bisson LF.

FEMS Yeast Res. 2001 Jul;1(2):111-25. Erratum in: FEMS Yeast Res. 2003 Oct;4(1):123.

17.

Enhancement of the initial rate of ethanol fermentation due to dysfunction of yeast stress response components Msn2p and/or Msn4p.

Watanabe D, Wu H, Noguchi C, Zhou Y, Akao T, Shimoi H.

Appl Environ Microbiol. 2011 Feb;77(3):934-41. doi: 10.1128/AEM.01869-10. Epub 2010 Dec 3.

18.

Apple Aminoacid Profile and Yeast Strains in the Formation of Fusel Alcohols and Esters in Cider Production.

Eleutério Dos Santos CM, Pietrowski Gde A, Braga CM, Rossi MJ, Ninow J, Machado Dos Santos TP, Wosiacki G, Jorge RM, Nogueira A.

J Food Sci. 2015 Jun;80(6):C1170-7. doi: 10.1111/1750-3841.12879. Epub 2015 Apr 28.

PMID:
25920613
19.

Bat2p is essential in Saccharomyces cerevisiae for fusel alcohol production on the non-fermentable carbon source ethanol.

Schoondermark-Stolk SA, Tabernero M, Chapman J, Ter Schure EG, Verrips CT, Verkleij AJ, Boonstra J.

FEMS Yeast Res. 2005 May;5(8):757-66.

20.

[Biosynthesis of congeners during alcohol fermentation].

Santillán-Valverde MC, García-Garibay M.

Rev Latinoam Microbiol. 1998 Jan-Jun;40(1-2):109-19. Review. Spanish.

PMID:
10932738

Supplemental Content

Support Center