Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 529

1.

Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel.

Pelc JS, Yu L, De Greve K, McMahon PL, Natarajan CM, Esfandyarpour V, Maier S, Schneider C, Kamp M, Höfling S, Hadfield RH, Forchel A, Yamamoto Y, Fejer MM.

Opt Express. 2012 Dec 3;20(25):27510-9. doi: 10.1364/OE.20.027510.

PMID:
23262701
2.

Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band.

Zaske S, Lenhard A, Becher C.

Opt Express. 2011 Jun 20;19(13):12825-36. doi: 10.1364/OE.19.012825.

PMID:
21716525
3.

Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength.

De Greve K, Yu L, McMahon PL, Pelc JS, Natarajan CM, Kim NY, Abe E, Maier S, Schneider C, Kamp M, Höfling S, Hadfield RH, Forchel A, Fejer MM, Yamamoto Y.

Nature. 2012 Nov 15;491(7424):421-5. doi: 10.1038/nature11577.

PMID:
23151585
4.

Ultrafast optical control of individual quantum dot spin qubits.

De Greve K, Press D, McMahon PL, Yamamoto Y.

Rep Prog Phys. 2013 Sep;76(9):092501. doi: 10.1088/0034-4885/76/9/092501. Epub 2013 Sep 4. Review.

PMID:
24006335
5.
6.

Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits.

Yu L, Natarajan CM, Horikiri T, Langrock C, Pelc JS, Tanner MG, Abe E, Maier S, Schneider C, Höfling S, Kamp M, Hadfield RH, Fejer MM, Yamamoto Y.

Nat Commun. 2015 Nov 24;6:8955. doi: 10.1038/ncomms9955.

7.

Broadband frequency conversion and shaping of single photons emitted from a nonlinear cavity.

McCutcheon MW, Chang DE, Zhang Y, Lukin MD, Loncar M.

Opt Express. 2009 Dec 7;17(25):22689-703. doi: 10.1364/OE.17.022689.

PMID:
20052195
8.

Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot.

Ates S, Agha I, Gulinatti A, Rech I, Rakher MT, Badolato A, Srinivasan K.

Phys Rev Lett. 2012 Oct 5;109(14):147405. Epub 2012 Oct 4.

PMID:
23083286
9.

OTDM to WDM format conversion based on quadratic cascading in a periodically poled lithium niobate waveguide.

Lee KJ, Liu S, Parmigiani F, Ibsen M, Petropoulos P, Gallo K, Richardson DJ.

Opt Express. 2010 May 10;18(10):10282-8. doi: 10.1364/OE.18.010282.

PMID:
20588881
10.

A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band.

Albrecht B, Farrera P, Fernandez-Gonzalvo X, Cristiani M, de Riedmatten H.

Nat Commun. 2014 Feb 27;5:3376. doi: 10.1038/ncomms4376.

PMID:
24572696
11.

A photonic quantum information interface.

Tanzilli S, Tittel W, Halder M, Alibart O, Baldi P, Gisin N, Zbinden H.

Nature. 2005 Sep 1;437(7055):116-20.

PMID:
16136138
12.

MHz rate and efficient synchronous heralding of single photons at telecom wavelengths.

Pomarico E, Sanguinetti B, Guerreiro T, Thew R, Zbinden H.

Opt Express. 2012 Oct 8;20(21):23846-55. doi: 10.1364/OE.20.023846.

PMID:
23188350
13.

Tunable optical wavelength conversion of OFDM signal using a periodically-poled lithium niobate waveguide.

Wu X, Peng WR, Arbab V, Wang J, Willner A.

Opt Express. 2009 May 25;17(11):9177-82.

PMID:
19466166
14.

Coherently driven semiconductor quantum dot at a telecommunication wavelength.

Takagi H, Nakaoka T, Watanabe K, Kumagai N, Arakawa Y.

Opt Express. 2008 Sep 1;16(18):13949-54.

PMID:
18773005
15.

Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA.

Contestabile G, Yoshida Y, Maruta A, Kitayama K.

Opt Express. 2012 Dec 3;20(25):27902-7. doi: 10.1364/OE.20.027902.

PMID:
23262735
16.

Quantum teleportation from a propagating photon to a solid-state spin qubit.

Gao WB, Fallahi P, Togan E, Delteil A, Chin YS, Miguel-Sanchez J, Imamoğlu A.

Nat Commun. 2013;4:2744. doi: 10.1038/ncomms3744.

PMID:
24177228
17.

Efficient high-power frequency doubling of distributed Bragg reflector tapered laser radiation in a periodically poled MgO-doped lithium niobate planar waveguide.

Jedrzejczyk D, Güther R, Paschke K, Jeong WJ, Lee HY, Erbert G.

Opt Lett. 2011 Feb 1;36(3):367-9. doi: 10.1364/OL.36.000367.

PMID:
21283192
18.

Fiber-based cryogenic and time-resolved spectroscopy of PbS quantum dots.

Rakher MT, Bose R, Wong CW, Srinivasan K.

Opt Express. 2011 Jan 31;19(3):1786-93. doi: 10.1364/OE.19.001786.

PMID:
21368993
19.

On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors.

Reithmaier G, Lichtmannecker S, Reichert T, Hasch P, Müller K, Bichler M, Gross R, Finley JJ.

Sci Rep. 2013;3:1901. doi: 10.1038/srep01901.

20.

Emission properties and photon statistics of a single quantum dot laser.

Ritter S, Gartner P, Gies C, Jahnke F.

Opt Express. 2010 May 10;18(10):9909-21. doi: 10.1364/OE.18.009909.

PMID:
20588843

Supplemental Content

Support Center