Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Experimental measurement and theoretical assessment of fast lanthanide electronic relaxation in solution with four series of isostructural complexes.

Funk AM, Fries PH, Harvey P, Kenwright AM, Parker D.

J Phys Chem A. 2013 Feb 7;117(5):905-17. doi: 10.1021/jp311273x. Epub 2013 Jan 24.

PMID:
23259577
2.

Challenging lanthanide relaxation theory: erbium and thulium complexes that show NMR relaxation rates faster than dysprosium and terbium analogues.

Funk AM, Harvey P, Finney KL, Fox MA, Kenwright AM, Rogers NJ, Senanayake PK, Parker D.

Phys Chem Chem Phys. 2015 Jul 7;17(25):16507-11. doi: 10.1039/c5cp02210j. Epub 2015 Jun 8.

PMID:
26051749
3.
4.

Another challenge to paramagnetic relaxation theory: a study of paramagnetic proton NMR relaxation in closely related series of pyridine-derivatised dysprosium complexes.

Rogers NJ, Finney KL, Senanayake PK, Parker D.

Phys Chem Chem Phys. 2016 Feb 14;18(6):4370-5. doi: 10.1039/c5cp06755c.

PMID:
26792243
5.

Lanthanide(III) complexes with a tetrapyridine pendant-armed macrocyclic ligand: 1H NMR structural determination in solution, X-ray diffraction, and density-functional theory calculations.

Del C Fernandez-Fernandez M, Bastida R, Macías A, Pérez-Lourido P, Platas-Iglesias C, Valencia L.

Inorg Chem. 2006 May 29;45(11):4484-96.

PMID:
16711699
7.

Quantitative interpretation of the very fast electronic relaxation of most Ln3+ ions in dissolved complexes.

Fries PH, Belorizky E.

J Chem Phys. 2012 Feb 21;136(7):074513. doi: 10.1063/1.3685584.

PMID:
22360254
8.

Isostructural series of nine-coordinate chiral lanthanide complexes based on triazacyclononane.

Walton JW, Carr R, Evans NH, Funk AM, Kenwright AM, Parker D, Yufit DS, Botta M, De Pinto S, Wong KL.

Inorg Chem. 2012 Aug 6;51(15):8042-56. doi: 10.1021/ic300147p. Epub 2012 Jul 19.

PMID:
22809198
9.

Magnetic susceptibility tensor anisotropies for a lanthanide ion series in a fixed protein matrix.

Bertini I, Janik MB, Lee YM, Luchinat C, Rosato A.

J Am Chem Soc. 2001 May 9;123(18):4181-8.

PMID:
11457182
11.

Lanthanide chelates containing pyridine units with potential application as contrast agents in magnetic resonance imaging.

Platas-Iglesias C, Mato-Iglesias M, Djanashvili K, Muller RN, Elst LV, Peters JA, de Blas A, Rodríguez-Blas T.

Chemistry. 2004 Jul 19;10(14):3579-90.

PMID:
15252806
12.
13.

Interaction between f-electronic systems in dinuclear lanthanide complexes with phthalocyanines.

Ishikawa N, Iino T, Kaizu Y.

J Am Chem Soc. 2002 Sep 25;124(38):11440-7.

PMID:
12236758
14.

Isoquinoline-based lanthanide complexes: bright NIR optical probes and efficient MRI agents.

Caillé F, Bonnet CS, Buron F, Villette S, Helm L, Petoud S, Suzenet F, Tóth E.

Inorg Chem. 2012 Feb 20;51(4):2522-32. doi: 10.1021/ic202446e. Epub 2012 Jan 10.

PMID:
22233349
15.

Magnetic field dependence of solvent proton relaxation by solute dysprosium (III) complexes.

Kellar KE, Fossheim SL, Koenig SH.

Invest Radiol. 1998 Nov;33(11):835-40.

PMID:
9818318
16.

An NMR strategy for fragment-based ligand screening utilizing a paramagnetic lanthanide probe.

Saio T, Ogura K, Shimizu K, Yokochi M, Burke TR Jr, Inagaki F.

J Biomol NMR. 2011 Nov;51(3):395-408. doi: 10.1007/s10858-011-9566-5. Epub 2011 Sep 17.

17.

Radical ions with nearly degenerate ground state: correlation between the rate of spin-lattice relaxation and the structure of adiabatic potential energy surface.

Borovkov VI, Beregovaya IV, Shchegoleva LN, Potashov PA, Bagryansky VA, Molin YN.

J Chem Phys. 2012 Sep 14;137(10):104305. doi: 10.1063/1.4749247.

PMID:
22979857
19.

High-resolution field-cycling NMR studies of a DNA octamer as a probe of phosphodiester dynamics and comparison with computer simulation.

Roberts MF, Cui Q, Turner CJ, Case DA, Redfield AG.

Biochemistry. 2004 Mar 30;43(12):3637-50.

PMID:
15035634
20.

Supplemental Content

Support Center