Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 188

1.

Human trophectoderm cells are not yet committed.

De Paepe C, Cauffman G, Verloes A, Sterckx J, Devroey P, Tournaye H, Liebaers I, Van de Velde H.

Hum Reprod. 2013 Mar;28(3):740-9. doi: 10.1093/humrep/des432. Epub 2012 Dec 19.

PMID:
23257394
2.

Cyclin E1 plays a key role in balancing between totipotency and differentiation in human embryonic cells.

Krivega MV, Geens M, Heindryckx B, Santos-Ribeiro S, Tournaye H, Van de Velde H.

Mol Hum Reprod. 2015 Dec;21(12):942-56. doi: 10.1093/molehr/gav053. Epub 2015 Sep 27.

PMID:
26416983
3.

Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse.

Niakan KK, Eggan K.

Dev Biol. 2013 Mar 1;375(1):54-64. doi: 10.1016/j.ydbio.2012.12.008. Epub 2012 Dec 19.

4.

FISH reanalysis of inner cell mass and trophectoderm samples of previously array-CGH screened blastocysts shows high accuracy of diagnosis and no major diagnostic impact of mosaicism at the blastocyst stage.

Capalbo A, Wright G, Elliott T, Ubaldi FM, Rienzi L, Nagy ZP.

Hum Reprod. 2013 Aug;28(8):2298-307. doi: 10.1093/humrep/det245. Epub 2013 Jun 5.

PMID:
23739221
5.

Sox2 is essential for formation of trophectoderm in the preimplantation embryo.

Keramari M, Razavi J, Ingman KA, Patsch C, Edenhofer F, Ward CM, Kimber SJ.

PLoS One. 2010 Nov 12;5(11):e13952. doi: 10.1371/journal.pone.0013952.

6.

HIPPO pathway members restrict SOX2 to the inner cell mass where it promotes ICM fates in the mouse blastocyst.

Wicklow E, Blij S, Frum T, Hirate Y, Lang RA, Sasaki H, Ralston A.

PLoS Genet. 2014 Oct 23;10(10):e1004618. doi: 10.1371/journal.pgen.1004618. eCollection 2014 Oct.

7.

Treatment of human embryos with the TGFβ inhibitor SB431542 increases epiblast proliferation and permits successful human embryonic stem cell derivation.

Van der Jeught M, Heindryckx B, O'Leary T, Duggal G, Ghimire S, Lierman S, Van Roy N, Chuva de Sousa Lopes SM, Deroo T, Deforce D, De Sutter P.

Hum Reprod. 2014 Jan;29(1):41-8. doi: 10.1093/humrep/det400. Epub 2013 Nov 19.

PMID:
24256991
8.

Changes in the expression patterns of the genes involved in the segregation and function of inner cell mass and trophectoderm lineages during porcine preimplantation development.

Fujii T, Sakurai N, Osaki T, Iwagami G, Hirayama H, Minamihashi A, Hashizume T, Sawai K.

J Reprod Dev. 2013;59(2):151-8. Epub 2012 Dec 20.

9.

The four blastomeres of a 4-cell stage human embryo are able to develop individually into blastocysts with inner cell mass and trophectoderm.

Van de Velde H, Cauffman G, Tournaye H, Devroey P, Liebaers I.

Hum Reprod. 2008 Aug;23(8):1742-7. doi: 10.1093/humrep/den190. Epub 2008 May 24.

PMID:
18503052
10.

Isolated mouse inner cell mass is unable to reconstruct trophectoderm.

Szczepanska K, Stanczuk L, Maleszewski M.

Differentiation. 2011 Jul;82(1):1-8. doi: 10.1016/j.diff.2011.04.001. Epub 2011 Apr 22.

PMID:
21514715
11.

Developmental kinetics of cleavage stage mouse embryos are related to their subsequent carbohydrate and amino acid utilization at the blastocyst stage.

Lee YS, Thouas GA, Gardner DK.

Hum Reprod. 2015 Mar;30(3):543-52. doi: 10.1093/humrep/deu334. Epub 2015 Jan 6.

PMID:
25567621
12.

Markers that define stemness in ESC are unable to identify the totipotent cells in human preimplantation embryos.

Cauffman G, De Rycke M, Sermon K, Liebaers I, Van de Velde H.

Hum Reprod. 2009 Jan;24(1):63-70. doi: 10.1093/humrep/den351. Epub 2008 Sep 29.

PMID:
18824471
13.

Trophoblast stem cell marker gene expression in inner cell mass-derived cells from parthenogenetic equine embryos.

Desmarais JA, Demers SP, Suzuki J Jr, Laflamme S, Vincent P, Laverty S, Smith LC.

Reproduction. 2011 Mar;141(3):321-32. doi: 10.1530/REP-09-0536. Epub 2011 Jan 5.

14.

Cross-regulation of the Nanog and Cdx2 promoters.

Chen L, Yabuuchi A, Eminli S, Takeuchi A, Lu CW, Hochedlinger K, Daley GQ.

Cell Res. 2009 Sep;19(9):1052-61. doi: 10.1038/cr.2009.79. Epub 2009 Jun 30.

PMID:
19564890
15.

Efficient derivation of pluripotent stem cells from siRNA-mediated Cdx2-deficient mouse embryos.

Wu G, Gentile L, Do JT, Cantz T, Sutter J, Psathaki K, Araúzo-Bravo MJ, Ortmeier C, Schöler HR.

Stem Cells Dev. 2011 Mar;20(3):485-93. doi: 10.1089/scd.2010.0128. Epub 2010 Oct 12.

16.

Functional characterization of CDX2 during bovine preimplantation development in vitro.

Goissis MD, Cibelli JB.

Mol Reprod Dev. 2014 Oct;81(10):962-70. doi: 10.1002/mrd.22415. Epub 2014 Sep 22.

PMID:
25251051
17.

Trophoblast-specific DNA methylation occurs after the segregation of the trophectoderm and inner cell mass in the mouse periimplantation embryo.

Nakanishi MO, Hayakawa K, Nakabayashi K, Hata K, Shiota K, Tanaka S.

Epigenetics. 2012 Feb;7(2):173-82. doi: 10.4161/epi.7.2.18962.

PMID:
22395467
18.

Control of ground-state pluripotency by allelic regulation of Nanog.

Miyanari Y, Torres-Padilla ME.

Nature. 2012 Feb 12;483(7390):470-3. doi: 10.1038/nature10807.

PMID:
22327294
19.

Early preimplantation cells expressing Cdx2 exhibit plasticity of specification to TE and ICM lineages through positional changes.

Toyooka Y, Oka S, Fujimori T.

Dev Biol. 2016 Mar 1;411(1):50-60. doi: 10.1016/j.ydbio.2016.01.011. Epub 2016 Jan 21.

20.

Developmental expression of pluripotency determining factors in caprine embryos: novel pattern of NANOG protein localization in the nucleolus.

He S, Pant D, Schiffmacher A, Bischoff S, Melican D, Gavin W, Keefer C.

Mol Reprod Dev. 2006 Dec;73(12):1512-22.

PMID:
16894532

Supplemental Content

Support Center