Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 97

1.

Comparative structural and functional studies of 4-(thiazol-5-yl)-2-(phenylamino)pyrimidine-5-carbonitrile CDK9 inhibitors suggest the basis for isotype selectivity.

Hole AJ, Baumli S, Shao H, Shi S, Huang S, Pepper C, Fischer PM, Wang S, Endicott JA, Noble ME.

J Med Chem. 2013 Feb 14;56(3):660-70. doi: 10.1021/jm301495v. Epub 2013 Jan 29.

2.

Substituted 4-(thiazol-5-yl)-2-(phenylamino)pyrimidines are highly active CDK9 inhibitors: synthesis, X-ray crystal structures, structure-activity relationship, and anticancer activities.

Shao H, Shi S, Huang S, Hole AJ, Abbas AY, Baumli S, Liu X, Lam F, Foley DW, Fischer PM, Noble M, Endicott JA, Pepper C, Wang S.

J Med Chem. 2013 Feb 14;56(3):640-59. doi: 10.1021/jm301475f. Epub 2013 Jan 25.

3.

Halogen bonds form the basis for selective P-TEFb inhibition by DRB.

Baumli S, Endicott JA, Johnson LN.

Chem Biol. 2010 Sep 24;17(9):931-6. doi: 10.1016/j.chembiol.2010.07.012.

4.

Molecular principle of the cyclin-dependent kinase selectivity of 4-(thiazol-5-yl)-2-(phenylamino) pyrimidine-5-carbonitrile derivatives revealed by molecular modeling studies.

Kong X, Sun H, Pan P, Tian S, Li D, Li Y, Hou T.

Phys Chem Chem Phys. 2016 Jan 21;18(3):2034-46. doi: 10.1039/c5cp05622e. Epub 2015 Dec 21.

PMID:
26686753
5.

2-Anilino-4-(thiazol-5-yl)pyrimidine CDK inhibitors: synthesis, SAR analysis, X-ray crystallography, and biological activity.

Wang S, Meades C, Wood G, Osnowski A, Anderson S, Yuill R, Thomas M, Mezna M, Jackson W, Midgley C, Griffiths G, Fleming I, Green S, McNae I, Wu SY, McInnes C, Zheleva D, Walkinshaw MD, Fischer PM.

J Med Chem. 2004 Mar 25;47(7):1662-75.

PMID:
15027857
6.

Novel, selective CDK9 inhibitors for the treatment of HIV infection.

Németh G, Varga Z, Greff Z, Bencze G, Sipos A, Szántai-Kis C, Baska F, Gyuris A, Kelemenics K, Szathmáry Z, Minárovits J, Kéri G, Orfi L.

Curr Med Chem. 2011;18(3):342-58.

PMID:
21143121
7.

Cyclin Dependent Kinase 9 Inhibitors for Cancer Therapy.

Sonawane YA, Taylor MA, Napoleon JV, Rana S, Contreras JI, Natarajan A.

J Med Chem. 2016 Oct 13;59(19):8667-8684. Epub 2016 Jun 3.

8.

The CDK9 C-helix exhibits conformational plasticity that may explain the selectivity of CAN508.

Baumli S, Hole AJ, Noble ME, Endicott JA.

ACS Chem Biol. 2012 May 18;7(5):811-6. doi: 10.1021/cb2004516. Epub 2012 Feb 10.

9.

Characterization of molecular and cellular functions of the cyclin-dependent kinase CDK9 using a novel specific inhibitor.

Albert TK, Rigault C, Eickhoff J, Baumgart K, Antrecht C, Klebl B, Mittler G, Meisterernst M.

Br J Pharmacol. 2014 Jan;171(1):55-68. doi: 10.1111/bph.12408.

10.

Conformational Adaption May Explain the Slow Dissociation Kinetics of Roniciclib (BAY 1000394), a Type I CDK Inhibitor with Kinetic Selectivity for CDK2 and CDK9.

Ayaz P, Andres D, Kwiatkowski DA, Kolbe CC, Lienau P, Siemeister G, Lücking U, Stegmann CM.

ACS Chem Biol. 2016 Jun 17;11(6):1710-9. doi: 10.1021/acschembio.6b00074. Epub 2016 Apr 19.

11.

Discovery and SAR of novel pyrazolo[1,5-a]pyrimidines as inhibitors of CDK9.

Phillipson LJ, Segal DH, Nero TL, Parker MW, Wan SS, de Silva M, Guthridge MA, Wei AH, Burns CJ.

Bioorg Med Chem. 2015 Oct 1;23(19):6280-96. doi: 10.1016/j.bmc.2015.08.035. Epub 2015 Aug 28.

PMID:
26349627
12.

Pharmacological targeting of CDK9 in cardiac hypertrophy.

Krystof V, Chamrád I, Jorda R, Kohoutek J.

Med Res Rev. 2010 Jul;30(4):646-66. doi: 10.1002/med.20172. Review.

PMID:
19757441
13.

Discovery and characterization of 2-anilino-4- (thiazol-5-yl)pyrimidine transcriptional CDK inhibitors as anticancer agents.

Wang S, Griffiths G, Midgley CA, Barnett AL, Cooper M, Grabarek J, Ingram L, Jackson W, Kontopidis G, McClue SJ, McInnes C, McLachlan J, Meades C, Mezna M, Stuart I, Thomas MP, Zheleva DI, Lane DP, Jackson RC, Glover DM, Blake DG, Fischer PM.

Chem Biol. 2010 Oct 29;17(10):1111-21. doi: 10.1016/j.chembiol.2010.07.016.

14.

Synthesis, structure-activity relationship and biological evaluation of 2,4,5-trisubstituted pyrimidine CDK inhibitors as potential anti-tumour agents.

Shao H, Shi S, Foley DW, Lam F, Abbas AY, Liu X, Huang S, Jiang X, Baharin N, Fischer PM, Wang S.

Eur J Med Chem. 2013;70:447-55. doi: 10.1016/j.ejmech.2013.08.052. Epub 2013 Sep 15.

PMID:
24185375
15.

Molecular simulation studies on the binding selectivity of 2-anilino-4-(thiazol-5-yl)-pyrimidines in complexes with CDK2 and CDK7.

Chohan TA, Qian HY, Pan YL, Chen JZ.

Mol Biosyst. 2016 Jan;12(1):145-61. doi: 10.1039/c5mb00630a.

PMID:
26565382
16.

The CDK9 tail determines the reaction pathway of positive transcription elongation factor b.

Baumli S, Hole AJ, Wang LZ, Noble ME, Endicott JA.

Structure. 2012 Oct 10;20(10):1788-95. doi: 10.1016/j.str.2012.08.011. Epub 2012 Sep 6.

17.

Meriolins, a new class of cell death inducing kinase inhibitors with enhanced selectivity for cyclin-dependent kinases.

Bettayeb K, Tirado OM, Marionneau-Lambot S, Ferandin Y, Lozach O, Morris JC, Mateo-Lozano S, Drueckes P, Schächtele C, Kubbutat MH, Liger F, Marquet B, Joseph B, Echalier A, Endicott JA, Notario V, Meijer L.

Cancer Res. 2007 Sep 1;67(17):8325-34.

18.

Computational study and peptide inhibitors design for the CDK9 - cyclin T1 complex.

Randjelović J, Erić S, Savić V.

J Mol Model. 2013 Apr;19(4):1711-25. doi: 10.1007/s00894-012-1735-2. Epub 2013 Jan 8.

PMID:
23296566
19.

An in silico exploration of the interaction mechanism of pyrazolo[1,5-a]pyrimidine type CDK2 inhibitors.

Li Y, Gao W, Li F, Wang J, Zhang J, Yang Y, Zhang S, Yang L.

Mol Biosyst. 2013 Sep;9(9):2266-81. doi: 10.1039/c3mb70186g.

PMID:
23864105
20.

Cyclin-dependent kinase 9 is required for tumor necrosis factor-alpha-stimulated matrix metalloproteinase-9 expression in human lung adenocarcinoma cells.

Shan B, Zhuo Y, Chin D, Morris CA, Morris GF, Lasky JA.

J Biol Chem. 2005 Jan 14;280(2):1103-11. Epub 2004 Nov 4.

Supplemental Content

Support Center