Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 190

1.

Lightweight and strong cellulose materials made from aqueous foams stabilized by nanofibrillated cellulose.

Cervin NT, Andersson L, Ng JB, Olin P, Bergström L, Wågberg L.

Biomacromolecules. 2013 Feb 11;14(2):503-11. doi: 10.1021/bm301755u. Epub 2013 Jan 14.

PMID:
23252421
2.

Mechanisms behind the stabilizing action of cellulose nanofibrils in wet-stable cellulose foams.

Cervin NT, Johansson E, Benjamins JW, Wågberg L.

Biomacromolecules. 2015 Mar 9;16(3):822-31. doi: 10.1021/bm5017173. Epub 2015 Feb 16.

PMID:
25635472
3.

Strong and tough cellulose nanopaper with high specific surface area and porosity.

Sehaqui H, Zhou Q, Ikkala O, Berglund LA.

Biomacromolecules. 2011 Oct 10;12(10):3638-44. doi: 10.1021/bm2008907. Epub 2011 Sep 9.

PMID:
21888417
4.

Strong, Water-Durable, and Wet-Resilient Cellulose Nanofibril-Stabilized Foams from Oven Drying.

Cervin NT, Johansson E, Larsson PA, Wågberg L.

ACS Appl Mater Interfaces. 2016 May 11;8(18):11682-9. doi: 10.1021/acsami.6b00924. Epub 2016 Apr 27.

PMID:
27070532
5.

Addition of silica nanoparticles to tailor the mechanical properties of nanofibrillated cellulose thin films.

Eita M, Arwin H, Granberg H, Wågberg L.

J Colloid Interface Sci. 2011 Nov 15;363(2):566-72. doi: 10.1016/j.jcis.2011.07.085. Epub 2011 Aug 5.

PMID:
21868023
6.

Stretchable and strong cellulose nanopaper structures based on polymer-coated nanofiber networks: an alternative to nonwoven porous membranes from electrospinning.

Sehaqui H, Morimune S, Nishino T, Berglund LA.

Biomacromolecules. 2012 Nov 12;13(11):3661-7. doi: 10.1021/bm301105s. Epub 2012 Oct 17.

PMID:
23046114
7.

Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers.

Iwamoto S, Isogai A, Iwata T.

Biomacromolecules. 2011 Mar 14;12(3):831-6. doi: 10.1021/bm101510r. Epub 2011 Feb 8.

PMID:
21302950
8.

Determination of Young's modulus for nanofibrillated cellulose multilayer thin films using buckling mechanics.

Cranston ED, Eita M, Johansson E, Netrval J, Salajková M, Arwin H, Wågberg L.

Biomacromolecules. 2011 Apr 11;12(4):961-9. doi: 10.1021/bm101330w. Epub 2011 Mar 11.

PMID:
21395236
9.

Development of biomedical porous titanium filled with medical polymer by in-situ polymerization of monomer solution infiltrated into pores.

Nakai M, Niinomi M, Akahori T, Tsutsumi H, Itsuno S, Haraguchi N, Itoh Y, Ogasawara T, Onishi T, Shindoh T.

J Mech Behav Biomed Mater. 2010 Jan;3(1):41-50. doi: 10.1016/j.jmbbm.2009.03.003. Epub 2009 Apr 5.

PMID:
19878901
10.

Hydrogel, aerogel and film of cellulose nanofibrils functionalized with silver nanoparticles.

Dong H, Snyder JF, Tran DT, Leadore JL.

Carbohydr Polym. 2013 Jun 20;95(2):760-7. doi: 10.1016/j.carbpol.2013.03.041. Epub 2013 Mar 21.

PMID:
23648039
11.

High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose.

Lee KY, Tammelin T, Schulfter K, Kiiskinen H, Samela J, Bismarck A.

ACS Appl Mater Interfaces. 2012 Aug;4(8):4078-86. doi: 10.1021/am300852a. Epub 2012 Aug 9.

PMID:
22839594
12.

Facile method for stiff, tough, and strong nanocomposites by direct exfoliation of multilayered graphene into native nanocellulose matrix.

Malho JM, Laaksonen P, Walther A, Ikkala O, Linder MB.

Biomacromolecules. 2012 Apr 9;13(4):1093-9. doi: 10.1021/bm2018189. Epub 2012 Mar 14.

PMID:
22372697
13.

Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time.

Benhamou K, Dufresne A, Magnin A, Mortha G, Kaddami H.

Carbohydr Polym. 2014 Jan;99:74-83. doi: 10.1016/j.carbpol.2013.08.032. Epub 2013 Aug 20.

PMID:
24274481
14.

Biodegradable poly(vinyl alcohol) foams supported by cellulose nanofibrils: processing, structure, and properties.

Liu D, Ma Z, Wang Z, Tian H, Gu M.

Langmuir. 2014 Aug 12;30(31):9544-50. doi: 10.1021/la502723d. Epub 2014 Aug 1.

PMID:
25062502
15.

Mechanical performance of macrofibers of cellulose and chitin nanofibrils aligned by wet-stretching: a critical comparison.

Torres-Rendon JG, Schacher FH, Ifuku S, Walther A.

Biomacromolecules. 2014 Jul 14;15(7):2709-17. doi: 10.1021/bm500566m. Epub 2014 Jun 27.

PMID:
24947934
16.

Inorganic hollow nanotube aerogels by atomic layer deposition onto native nanocellulose templates.

Korhonen JT, Hiekkataipale P, Malm J, Karppinen M, Ikkala O, Ras RH.

ACS Nano. 2011 Mar 22;5(3):1967-74. doi: 10.1021/nn200108s. Epub 2011 Mar 1.

PMID:
21361349
17.

Production and modification of nanofibrillated cellulose using various mechanical processes: a review.

Abdul Khalil HP, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R, Jawaid M.

Carbohydr Polym. 2014 Jan;99:649-65. doi: 10.1016/j.carbpol.2013.08.069. Epub 2013 Sep 2. Review.

PMID:
24274556
18.

Amine-based nanofibrillated cellulose as adsorbent for CO₂ capture from air.

Gebald C, Wurzbacher JA, Tingaut P, Zimmermann T, Steinfeld A.

Environ Sci Technol. 2011 Oct 15;45(20):9101-8. doi: 10.1021/es202223p. Epub 2011 Sep 26.

PMID:
21916488
19.

Fast and reversible direct CO2 capture from air onto all-polymer nanofibrillated cellulose-polyethylenimine foams.

Sehaqui H, Gálvez ME, Becatinni V, cheng Ng Y, Steinfeld A, Zimmermann T, Tingaut P.

Environ Sci Technol. 2015 Mar 3;49(5):3167-74. doi: 10.1021/es504396v. Epub 2015 Feb 11.

PMID:
25629220
20.

Spray-dried nanofibrillar cellulose microparticles for sustained drug release.

Kolakovic R, Laaksonen T, Peltonen L, Laukkanen A, Hirvonen J.

Int J Pharm. 2012 Jul 1;430(1-2):47-55. doi: 10.1016/j.ijpharm.2012.03.031. Epub 2012 Mar 24.

PMID:
22465549

Supplemental Content

Support Center