Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 121

1.

Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons.

Huang H, Wei D, Sun J, Wong SL, Feng YP, Neto AH, Wee AT.

Sci Rep. 2012;2:983. doi: 10.1038/srep00983. Epub 2012 Dec 17.

2.

Atomically precise bottom-up fabrication of graphene nanoribbons.

Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R.

Nature. 2010 Jul 22;466(7305):470-3. doi: 10.1038/nature09211.

PMID:
20651687
3.

Excitonic effects in the optical spectra of graphene nanoribbons.

Yang L, Cohen ML, Louie SG.

Nano Lett. 2007 Oct;7(10):3112-5. Epub 2007 Sep 8.

PMID:
17824720
4.

Site-Specific Substitutional Boron Doping of Semiconducting Armchair Graphene Nanoribbons.

Cloke RR, Marangoni T, Nguyen GD, Joshi T, Rizzo DJ, Bronner C, Cao T, Louie SG, Crommie MF, Fischer FR.

J Am Chem Soc. 2015 Jul 22;137(28):8872-5. doi: 10.1021/jacs.5b02523. Epub 2015 Jul 9.

PMID:
26153349
5.

Tuning the band gap of graphene nanoribbons synthesized from molecular precursors.

Chen YC, de Oteyza DG, Pedramrazi Z, Chen C, Fischer FR, Crommie MF.

ACS Nano. 2013 Jul 23;7(7):6123-8. doi: 10.1021/nn401948e. Epub 2013 Jun 12.

PMID:
23746141
6.

Electronic structure of atomically precise graphene nanoribbons.

Ruffieux P, Cai J, Plumb NC, Patthey L, Prezzi D, Ferretti A, Molinari E, Feng X, Müllen K, Pignedoli CA, Fasel R.

ACS Nano. 2012 Aug 28;6(8):6930-5. doi: 10.1021/nn3021376. Epub 2012 Aug 7.

PMID:
22853456
7.

Graphene edge lithography.

Xie G, Shi Z, Yang R, Liu D, Yang W, Cheng M, Wang D, Shi D, Zhang G.

Nano Lett. 2012 Sep 12;12(9):4642-6. doi: 10.1021/nl301936r. Epub 2012 Aug 16.

PMID:
22888761
8.

Programmable sub-nanometer sculpting of graphene with electron beams.

Börrnert F, Fu L, Gorantla S, Knupfer M, Büchner B, Rümmeli MH.

ACS Nano. 2012 Nov 27;6(11):10327-34. doi: 10.1021/nn304256a. Epub 2012 Nov 2.

PMID:
23110721
9.

Large-Area, Highly Ordered Array of Graphitic Carbon Materials Using Surface Active Chitosan Prepatterns.

Baek YK, Kim DW, Yang SB, Lee JG, Kim YK, Jung HT.

J Nanosci Nanotechnol. 2015 Feb;15(2):1221-8.

PMID:
26353637
10.

Growth of semiconducting graphene on palladium.

Kwon SY, Ciobanu CV, Petrova V, Shenoy VB, Bareño J, Gambin V, Petrov I, Kodambaka S.

Nano Lett. 2009 Dec;9(12):3985-90. doi: 10.1021/nl902140j.

PMID:
19995079
11.

Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography.

Tapasztó L, Dobrik G, Lambin P, Biró LP.

Nat Nanotechnol. 2008 Jul;3(7):397-401. doi: 10.1038/nnano.2008.149. Epub 2008 Jun 8.

PMID:
18654562
12.

Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.

Barone V, Hod O, Peralta JE, Scuseria GE.

Acc Chem Res. 2011 Apr 19;44(4):269-79. doi: 10.1021/ar100137c. Epub 2011 Mar 9.

PMID:
21388164
13.

Electrical property measurements of metallized flagella-templated silica nanotube networks.

Jo W, Darmawan M, Kim J, Ahn CW, Byun D, Baik SH, Kim MJ.

Nanotechnology. 2013 Apr 5;24(13):135704. doi: 10.1088/0957-4484/24/13/135704. Epub 2013 Mar 12.

PMID:
23478423
14.

Nanoscale reduction of graphene fluoride via thermochemical nanolithography.

Lee WK, Haydell M, Robinson JT, Laracuente AR, Cimpoiasu E, King WP, Sheehan PE.

ACS Nano. 2013 Jul 23;7(7):6219-24. doi: 10.1021/nn4021746. Epub 2013 Jun 17.

PMID:
23758200
15.

Epitaxial graphene nanoribbon array fabrication using BCP-assisted nanolithography.

Liu G, Wu Y, Lin YM, Farmer DB, Ott JA, Bruley J, Grill A, Avouris P, Pfeiffer D, Balandin AA, Dimitrakopoulos C.

ACS Nano. 2012 Aug 28;6(8):6786-92. doi: 10.1021/nn301515a. Epub 2012 Jul 31.

PMID:
22780305
16.

OWL-based nanomasks for preparing graphene ribbons with sub-10 nm gaps.

Zhou X, Shade CM, Schmucker AL, Brown KA, He S, Boey F, Ma J, Zhang H, Mirkin CA.

Nano Lett. 2012 Sep 12;12(9):4734-7. doi: 10.1021/nl302171z. Epub 2012 Aug 23.

PMID:
22889421
17.

Registry-induced electronic superstructure in double-walled carbon nanotubes, associated with the interaction between two graphene-like monolayers.

Tison Y, Giusca CE, Sloan J, Silva SR.

ACS Nano. 2008 Oct 28;2(10):2113-20. doi: 10.1021/nn800483k.

PMID:
19206458
18.

Synthesis of S-doped graphene by liquid precursor.

Gao H, Liu Z, Song L, Guo W, Gao W, Ci L, Rao A, Quan W, Vajtai R, Ajayan PM.

Nanotechnology. 2012 Jul 11;23(27):275605. doi: 10.1088/0957-4484/23/27/275605. Epub 2012 Jun 19.

PMID:
22710561
19.

Conduction tuning of graphene based on defect-induced localization.

Nakaharai S, Iijima T, Ogawa S, Suzuki S, Li SL, Tsukagoshi K, Sato S, Yokoyama N.

ACS Nano. 2013 Jul 23;7(7):5694-700. doi: 10.1021/nn401992q. Epub 2013 Jun 26.

PMID:
23786356
20.

Nonlocal exchange interaction removes half-metallicity in graphene nanoribbons.

Rudberg E, Sałek P, Luo Y.

Nano Lett. 2007 Aug;7(8):2211-3. Epub 2007 Jun 29.

PMID:
17602536

Supplemental Content

Support Center