Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 125

1.

Coordination of peroxide to the Cu(M) center of peptidylglycine α-hydroxylating monooxygenase (PHM): structural and computational study.

Rudzka K, Moreno DM, Eipper B, Mains R, Estrin DA, Amzel LM.

J Biol Inorg Chem. 2013 Feb;18(2):223-32. doi: 10.1007/s00775-012-0967-z. Epub 2012 Dec 18.

4.

Differential reactivity between two copper sites in peptidylglycine α-hydroxylating monooxygenase.

Chufán EE, Prigge ST, Siebert X, Eipper BA, Mains RE, Amzel LM.

J Am Chem Soc. 2010 Nov 10;132(44):15565-72. doi: 10.1021/ja103117r.

5.

The catalytic mechanism of peptidylglycine alpha-hydroxylating monooxygenase investigated by computer simulation.

Crespo A, Martí MA, Roitberg AE, Amzel LM, Estrin DA.

J Am Chem Soc. 2006 Oct 4;128(39):12817-28.

PMID:
17002377
6.

Active site models for the Cu(A) site of peptidylglycine α-hydroxylating monooxygenase and dopamine β-monooxygenase.

Kunishita A, Ertem MZ, Okubo Y, Tano T, Sugimoto H, Ohkubo K, Fujieda N, Fukuzumi S, Cramer CJ, Itoh S.

Inorg Chem. 2012 Sep 3;51(17):9465-80. doi: 10.1021/ic301272h. Epub 2012 Aug 21.

PMID:
22908844
7.

The catalytic copper of peptidylglycine alpha-hydroxylating monooxygenase also plays a critical structural role.

Siebert X, Eipper BA, Mains RE, Prigge ST, Blackburn NJ, Amzel LM.

Biophys J. 2005 Nov;89(5):3312-9. Epub 2005 Aug 12.

8.

Amidation of bioactive peptides: the structure of peptidylglycine alpha-hydroxylating monooxygenase.

Prigge ST, Kolhekar AS, Eipper BA, Mains RE, Amzel LM.

Science. 1997 Nov 14;278(5341):1300-5.

10.
12.
13.

Binding of copper and silver to single-site variants of peptidylglycine monooxygenase reveals the structure and chemistry of the individual metal centers.

Chauhan S, Kline CD, Mayfield M, Blackburn NJ.

Biochemistry. 2014 Feb 18;53(6):1069-80. doi: 10.1021/bi4015264. Epub 2014 Feb 7.

14.

A copper-methionine interaction controls the pH-dependent activation of peptidylglycine monooxygenase.

Bauman AT, Broers BA, Kline CD, Blackburn NJ.

Biochemistry. 2011 Dec 20;50(50):10819-28. doi: 10.1021/bi201193j. Epub 2011 Nov 22.

15.
16.

Kβ Valence to Core X-ray Emission Studies of Cu(I) Binding Proteins with Mixed Methionine - Histidine Coordination. Relevance to the Reactivity of the M- and H-sites of Peptidylglycine Monooxygenase.

Martin-Diaconescu V, Chacón KN, Delgado-Jaime MU, Sokaras D, Weng TC, DeBeer S, Blackburn NJ.

Inorg Chem. 2016 Apr 4;55(7):3431-9. doi: 10.1021/acs.inorgchem.5b02842. Epub 2016 Mar 11.

17.

Theoretical modelling of tripodal CuN3 and CuN4 cuprous complexes interacting with O2, CO or CH3CN.

de la Lande A, Gérard H, Moliner V, Izzet G, Reinaud O, Parisel O.

J Biol Inorg Chem. 2006 Jul;11(5):593-608. Epub 2006 May 17.

PMID:
16791643
18.

Models for dioxygen activation by the CuB site of dopamine beta-monooxygenase and peptidylglycine alpha-hydroxylating monooxygenase.

Gherman BF, Heppner DE, Tolman WB, Cramer CJ.

J Biol Inorg Chem. 2006 Mar;11(2):197-205. Epub 2005 Dec 13.

PMID:
16344970
19.

Mechanism of O2 activation and substrate hydroxylation in noncoupled binuclear copper monooxygenases.

Cowley RE, Tian L, Solomon EI.

Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12035-12040. Epub 2016 Oct 10.

20.

Substrate-mediated electron transfer in peptidylglycine alpha-hydroxylating monooxygenase.

Prigge ST, Kolhekar AS, Eipper BA, Mains RE, Amzel LM.

Nat Struct Biol. 1999 Oct;6(10):976-83.

PMID:
10504734

Supplemental Content

Support Center