Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 167

1.

Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals.

Park SJ, Kim EY, Noh W, Park HM, Oh YH, Lee SH, Song BK, Jegal J, Lee SY.

Metab Eng. 2013 Mar;16:42-7. doi: 10.1016/j.ymben.2012.11.011. Epub 2012 Dec 14.

PMID:
23246520
2.

Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.

Shin JH, Park SH, Oh YH, Choi JW, Lee MH, Cho JS, Jeong KJ, Joo JC, Yu J, Park SJ, Lee SY.

Microb Cell Fact. 2016 Oct 7;15(1):174.

3.

Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate.

Rohles CM, Gießelmann G, Kohlstedt M, Wittmann C, Becker J.

Microb Cell Fact. 2016 Sep 13;15(1):154. doi: 10.1186/s12934-016-0553-0.

4.

High-level conversion of L-lysine into 5-aminovalerate that can be used for nylon 6,5 synthesis.

Park SJ, Oh YH, Noh W, Kim HY, Shin JH, Lee EG, Lee S, David Y, Baylon MG, Song BK, Jegal J, Lee SY, Lee SH.

Biotechnol J. 2014 Oct;9(10):1322-8. doi: 10.1002/biot.201400156. Epub 2014 Sep 8.

PMID:
25124937
5.

Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate.

Adkins J, Jordan J, Nielsen DR.

Biotechnol Bioeng. 2013 Jun;110(6):1726-34. doi: 10.1002/bit.24828. Epub 2013 Jan 17.

PMID:
23296991
6.

Overexpression of transport proteins improves the production of 5-aminovalerate from l-lysine in Escherichia coli.

Li Z, Xu J, Jiang T, Ge Y, Liu P, Zhang M, Su Z, Gao C, Ma C, Xu P.

Sci Rep. 2016 Aug 11;6:30884. doi: 10.1038/srep30884.

7.

Enzymatic production of 5-aminovalerate from L-lysine using L-lysine monooxygenase and 5-aminovaleramide amidohydrolase.

Liu P, Zhang H, Lv M, Hu M, Li Z, Gao C, Xu P, Ma C.

Sci Rep. 2014 Jul 11;4:5657. doi: 10.1038/srep05657.

8.

De Novo Biosynthesis of Glutarate via α-Keto Acid Carbon Chain Extension and Decarboxylation Pathway in Escherichia coli.

Wang J, Wu Y, Sun X, Yuan Q, Yan Y.

ACS Synth Biol. 2017 Oct 20;6(10):1922-1930. doi: 10.1021/acssynbio.7b00136. Epub 2017 Jun 23.

PMID:
28618222
10.

A new metabolic route for the fermentative production of 5-aminovalerate from glucose and alternative carbon sources.

Jorge JMP, Pérez-García F, Wendisch VF.

Bioresour Technol. 2017 Dec;245(Pt B):1701-1709. doi: 10.1016/j.biortech.2017.04.108. Epub 2017 Apr 29.

PMID:
28522202
11.

Vanillin production using Escherichia coli cells over-expressing isoeugenol monooxygenase of Pseudomonas putida.

Yamada M, Okada Y, Yoshida T, Nagasawa T.

Biotechnol Lett. 2008 Apr;30(4):665-70. Epub 2007 Nov 27.

PMID:
18040605
12.

Production of medium chain length fatty alcohols from glucose in Escherichia coli.

Youngquist JT, Schumacher MH, Rose JP, Raines TC, Politz MC, Copeland MF, Pfleger BF.

Metab Eng. 2013 Nov;20:177-86. doi: 10.1016/j.ymben.2013.10.006. Epub 2013 Oct 17.

13.

The oxidation of alkylaryl sulfides and benzo[b]thiophenes by Escherichia coli cells expressing wild-type and engineered styrene monooxygenase from Pseudomonas putida CA-3.

Nikodinovic-Runic J, Coulombel L, Francuski D, Sharma ND, Boyd DR, Ferrall RM, O'Connor KE.

Appl Microbiol Biotechnol. 2013 Jun;97(11):4849-58. doi: 10.1007/s00253-012-4332-5. Epub 2012 Aug 14.

PMID:
22890778
14.

Biosynthesis of poly(2-hydroxyisovalerate-co-lactate) by metabolically engineered Escherichia coli.

Yang JE, Kim JW, Oh YH, Choi SY, Lee H, Park AR, Shin J, Park SJ, Lee SY.

Biotechnol J. 2016 Dec;11(12):1572-1585. doi: 10.1002/biot.201600420. Epub 2016 Sep 27.

PMID:
27600064
15.

Oxidative decarboxylation of mandelic acid derivative by recombinant Escherichia coli: a novel method of ethyl vanillin synthesis.

Pan XX, Li JJ, Wang MG, He WS, Jia CS, Zhang XM, Feng B, Li DL, Zeng Z.

Biotechnol Lett. 2013 Jun;35(6):921-7. doi: 10.1007/s10529-013-1158-x. Epub 2013 Feb 22.

PMID:
23430129
16.

Enhanced indirubin production in recombinant Escherichia coli harboring a flavin-containing monooxygenase gene by cysteine supplementation.

Han GH, Gim GH, Kim W, Seo SI, Kim SW.

J Biotechnol. 2012 Dec 15;164(2):179-87. doi: 10.1016/j.jbiotec.2012.08.015. Epub 2012 Aug 30.

PMID:
22954889
17.

Cloning, sequencing, and expression in Escherichia coli of D-hydantoinase gene from Pseudomonas putida.

Chen HY, Tsai H.

Ann N Y Acad Sci. 1998 Dec 13;864:234-7. No abstract available.

PMID:
9928097
18.

Multiple and interconnected pathways for L-lysine catabolism in Pseudomonas putida KT2440.

Revelles O, Espinosa-Urgel M, Fuhrer T, Sauer U, Ramos JL.

J Bacteriol. 2005 Nov;187(21):7500-10.

19.

Metabolic engineering of Escherichia coli for production of salvianic acid A via an artificial biosynthetic pathway.

Yao YF, Wang CS, Qiao J, Zhao GR.

Metab Eng. 2013 Sep;19:79-87. doi: 10.1016/j.ymben.2013.06.001. Epub 2013 Jun 14.

PMID:
23774671
20.

Metabolic engineering of Escherichia coli for the production of four-, five- and six-carbon lactams.

Chae TU, Ko YS, Hwang KS, Lee SY.

Metab Eng. 2017 May;41:82-91. doi: 10.1016/j.ymben.2017.04.001. Epub 2017 Apr 5.

PMID:
28390749

Supplemental Content

Support Center