Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 253

1.

Transcriptomic profiling during the post-harvest of heat-treated Dixiland Prunus persica fruits: common and distinct response to heat and cold.

Lauxmann MA, Brun B, Borsani J, Bustamante CA, Budde CO, Lara MV, Drincovich MF.

PLoS One. 2012;7(12):e51052. doi: 10.1371/journal.pone.0051052. Epub 2012 Dec 6.

2.

Biochemical and proteomic analysis of 'Dixiland' peach fruit (Prunus persica) upon heat treatment.

Lara MV, Borsani J, Budde CO, Lauxmann MA, Lombardo VA, Murray R, Andreo CS, Drincovich MF.

J Exp Bot. 2009;60(15):4315-33. doi: 10.1093/jxb/erp267. Epub 2009 Sep 4.

PMID:
19734260
3.

Heat treatment of peach fruit: modifications in the extracellular compartment and identification of novel extracellular proteins.

Bustamante CA, Budde CO, Borsani J, Lombardo VA, Lauxmann MA, Andreo CS, Lara MV, Drincovich MF.

Plant Physiol Biochem. 2012 Nov;60:35-45. doi: 10.1016/j.plaphy.2012.07.021. Epub 2012 Aug 3.

PMID:
22902552
4.

Deciphering the metabolic pathways influencing heat and cold responses during post-harvest physiology of peach fruit.

Lauxmann MA, Borsani J, Osorio S, Lombardo VA, Budde CO, Bustamante CA, Monti LL, Andreo CS, Fernie AR, Drincovich MF, Lara MV.

Plant Cell Environ. 2014 Mar;37(3):601-16. doi: 10.1111/pce.12181. Epub 2013 Sep 8.

5.

Comparative EST transcript profiling of peach fruits under different post-harvest conditions reveals candidate genes associated with peach fruit quality.

Vizoso P, Meisel LA, Tittarelli A, Latorre M, Saba J, Caroca R, Maldonado J, Cambiazo V, Campos-Vargas R, Gonzalez M, Orellana A, Silva H.

BMC Genomics. 2009 Sep 10;10:423. doi: 10.1186/1471-2164-10-423.

6.

A bulk segregant gene expression analysis of a peach population reveals components of the underlying mechanism of the fruit cold response.

Pons C, Martí C, Forment J, Crisosto CH, Dandekar AM, Granell A.

PLoS One. 2014 Mar 5;9(3):e90706. doi: 10.1371/journal.pone.0090706. eCollection 2014.

7.

Carbon metabolism of peach fruit after harvest: changes in enzymes involved in organic acid and sugar level modifications.

Borsani J, Budde CO, Porrini L, Lauxmann MA, Lombardo VA, Murray R, Andreo CS, Drincovich MF, Lara MV.

J Exp Bot. 2009;60(6):1823-37. doi: 10.1093/jxb/erp055. Epub 2009 Mar 5.

PMID:
19264753
8.

Spermidine application to young developing peach fruits leads to a slowing down of ripening by impairing ripening-related ethylene and auxin metabolism and signaling.

Torrigiani P, Bressanin D, Ruiz KB, Tadiello A, Trainotti L, Bonghi C, Ziosi V, Costa G.

Physiol Plant. 2012 Sep;146(1):86-98. doi: 10.1111/j.1399-3054.2012.01612.x. Epub 2012 Apr 17.

PMID:
22409726
9.

Identification of woolliness response genes in peach fruit after post-harvest treatments.

González-Agüero M, Pavez L, Ibáñez F, Pacheco I, Campos-Vargas R, Meisel LA, Orellana A, Retamales J, Silva H, González M, Cambiazo V.

J Exp Bot. 2008;59(8):1973-86. doi: 10.1093/jxb/ern069. Epub 2008 May 3.

10.

Postharvest temperature influences volatile lactone production via regulation of acyl-CoA oxidases in peach fruit.

Xi WP, Zhang B, Liang L, Shen JY, Wei WW, Xu CJ, Allan AC, Ferguson IB, Chen KS.

Plant Cell Environ. 2012 Mar;35(3):534-45. doi: 10.1111/j.1365-3040.2011.02433.x. Epub 2011 Oct 24.

11.

A ß-D: -xylosidase and a PR-4B precursor identified as genes accounting for differences in peach cold storage tolerance.

Falara V, Manganaris GA, Ziliotto F, Manganaris A, Bonghi C, Ramina A, Kanellis AK.

Funct Integr Genomics. 2011 Jun;11(2):357-68. doi: 10.1007/s10142-010-0204-1. Epub 2011 Jan 11.

PMID:
21221699
12.

Isolation and functional characterization of cold-regulated promoters, by digitally identifying peach fruit cold-induced genes from a large EST dataset.

Tittarelli A, Santiago M, Morales A, Meisel LA, Silva H.

BMC Plant Biol. 2009 Sep 22;9:121. doi: 10.1186/1471-2229-9-121.

13.

Peach (Prunus persica) fruit response to anoxia: reversible ripening delay and biochemical changes.

Lara MV, Budde CO, Porrini L, Borsani J, Murray R, Andreo CS, Drincovich MF.

Plant Cell Physiol. 2011 Feb;52(2):392-403. doi: 10.1093/pcp/pcq200. Epub 2010 Dec 23.

PMID:
21186173
14.

Proteomic analysis of peach fruit during ripening upon post-harvest heat combined with 1-MCP treatment.

Jiang L, Zhang L, Shi Y, Lu Z, Yu Z.

J Proteomics. 2014 Feb 26;98:31-43. doi: 10.1016/j.jprot.2013.11.019. Epub 2013 Dec 10.

PMID:
24333156
15.

Genome wide identification of chilling responsive microRNAs in Prunus persica.

Barakat A, Sriram A, Park J, Zhebentyayeva T, Main D, Abbott A.

BMC Genomics. 2012 Sep 15;13:481. doi: 10.1186/1471-2164-13-481.

16.

Transcriptome analysis of peach (Prunus persica L. Batsch) during the late stage of fruit ripening.

Pan HF, Sheng Y, Gao ZH, Chen HL, Qi YJ, Yi XK, Qin GH, Zhang JY.

Genet Mol Res. 2016 Dec 23;15(4). doi: 10.4238/gmr15049335.

PMID:
28081283
17.

Pre-symptomatic transcriptome changes during cold storage of chilling sensitive and resistant peach cultivars to elucidate chilling injury mechanisms.

Pons Puig C, Dagar A, Marti Ibanez C, Singh V, Crisosto CH, Friedman H, Lurie S, Granell A.

BMC Genomics. 2015 Mar 26;16:245. doi: 10.1186/s12864-015-1395-6.

18.

Effect of post-harvest heat treatment on proteome change of peach fruit during ripening.

Zhang L, Yu Z, Jiang L, Jiang J, Luo H, Fu L.

J Proteomics. 2011 Jun 10;74(7):1135-49. doi: 10.1016/j.jprot.2011.04.012. Epub 2011 Apr 23.

PMID:
21550427
19.

Transcriptome profiling of ripening nectarine (Prunus persica L. Batsch) fruit treated with 1-MCP.

Ziliotto F, Begheldo M, Rasori A, Bonghi C, Tonutti P.

J Exp Bot. 2008;59(10):2781-91. doi: 10.1093/jxb/ern136. Epub 2008 May 29.

20.

Expression of three sHSP genes involved in heat pretreatment-induced chilling tolerance in banana fruit.

He LH, Chen JY, Kuang JF, Lu WJ.

J Sci Food Agric. 2012 Jul;92(9):1924-30. doi: 10.1002/jsfa.5562. Epub 2012 Jan 10.

PMID:
22234735

Supplemental Content

Support Center