Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 107

1.

Altered mechanical properties of titin immunoglobulin domain 27 in the presence of calcium.

DuVall MM, Gifford JL, Amrein M, Herzog W.

Eur Biophys J. 2013 Apr;42(4):301-7. doi: 10.1007/s00249-012-0875-8. Epub 2012 Dec 7.

PMID:
23224300
2.

Dynamics of equilibrium folding and unfolding transitions of titin immunoglobulin domain under constant forces.

Chen H, Yuan G, Winardhi RS, Yao M, Popa I, Fernandez JM, Yan J.

J Am Chem Soc. 2015 Mar 18;137(10):3540-6. doi: 10.1021/ja5119368. Epub 2015 Mar 9.

4.

Immunoglobulin-like modules from titin I-band: extensible components of muscle elasticity.

Improta S, Politou AS, Pastore A.

Structure. 1996 Mar 15;4(3):323-37.

5.

Computing Average Passive Forces in Sarcomeres in Length-Ramp Simulations.

Schappacher-Tilp G, Leonard T, Desch G, Herzog W.

PLoS Comput Biol. 2016 Jun 8;12(6):e1004904. doi: 10.1371/journal.pcbi.1004904. eCollection 2016 Jun.

6.

Individual globular domains and domain unfolding visualized in overstretched titin molecules with atomic force microscopy.

Mártonfalvi Z, Kellermayer M.

PLoS One. 2014 Jan 20;9(1):e85847. doi: 10.1371/journal.pone.0085847. eCollection 2014.

7.

Different molecular mechanics displayed by titin's constitutively and differentially expressed tandem Ig segments.

Watanabe K, Muhle-Goll C, Kellermayer MS, Labeit S, Granzier H.

J Struct Biol. 2002 Jan-Feb;137(1-2):248-58.

PMID:
12064950
8.

Computer modeling of force-induced titin domain unfolding.

Lu H, Krammer A, Isralewitz B, Vogel V, Schulten K.

Adv Exp Med Biol. 2000;481:143-60; discussion 161-2.

PMID:
10987071
9.

Titin force is enhanced in actively stretched skeletal muscle.

Powers K, Schappacher-Tilp G, Jinha A, Leonard T, Nishikawa K, Herzog W.

J Exp Biol. 2014 Oct 15;217(Pt 20):3629-36. doi: 10.1242/jeb.105361. Epub 2014 Aug 21.

10.

Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation.

Lu H, Isralewitz B, Krammer A, Vogel V, Schulten K.

Biophys J. 1998 Aug;75(2):662-71.

11.

Viscoelastic study of the mechanical unfolding of a protein by AFM.

Kawakami M, Byrne K, Brockwell DJ, Radford SE, Smith DA.

Biophys J. 2006 Jul 15;91(2):L16-8. Epub 2006 May 12.

12.

Mechanics and structure of titin oligomers explored with atomic force microscopy.

Kellermayer MS, Bustamante C, Granzier HL.

Biochim Biophys Acta. 2003 Jun 5;1604(2):105-14.

13.

Mechanical stability and differentially conserved physical-chemical properties of titin Ig-domains.

Garcia TI, Oberhauser AF, Braun W.

Proteins. 2009 May 15;75(3):706-18. doi: 10.1002/prot.22281.

15.

Titin domains progressively unfolded by force are homogenously distributed along the molecule.

Bianco P, Mártonfalvi Z, Naftz K, Kőszegi D, Kellermayer M.

Biophys J. 2015 Jul 21;109(2):340-5. doi: 10.1016/j.bpj.2015.06.002.

16.

Unfolding of titin domains studied by molecular dynamics simulations.

Gao M, Lu H, Schulten K.

J Muscle Res Cell Motil. 2002;23(5-6):513-21.

PMID:
12785101
17.

Titin (visco-) elasticity in skeletal muscle myofibrils.

Herzog JA, Leonard TR, Jinha A, Herzog W.

Mol Cell Biomech. 2014 Mar;11(1):1-17.

PMID:
25330621
18.

Simulated refolding of stretched titin immunoglobulin domains.

Gao M, Lu H, Schulten K.

Biophys J. 2001 Oct;81(4):2268-77.

19.

Restoring force development by titin/connectin and assessment of Ig domain unfolding.

Preetha N, Yiming W, Helmes M, Norio F, Siegfried L, Granzier H.

J Muscle Res Cell Motil. 2005;26(6-8):307-17.

PMID:
16470334
20.

Molecular basis of passive stress relaxation in human soleus fibers: assessment of the role of immunoglobulin-like domain unfolding.

Trombitás K, Wu Y, McNabb M, Greaser M, Kellermayer MS, Labeit S, Granzier H.

Biophys J. 2003 Nov;85(5):3142-53.

Supplemental Content

Support Center