Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 120

1.
2.

The effect of ligand substitution and water co-adsorption on the adsorption dynamics and energy level matching of amino-phenyl acid dyes on TiO2.

Manzhos S, Segawa H, Yamashita K.

Phys Chem Chem Phys. 2012 Feb 7;14(5):1749-55. doi: 10.1039/c2cp23039a. Epub 2011 Dec 21.

PMID:
22194034
3.

Electronic and optical properties of dye-sensitized TiO₂ interfaces.

Pastore M, Selloni A, Fantacci S, De Angelis F.

Top Curr Chem. 2014;347:1-45. doi: 10.1007/128_2013_507.

PMID:
24488437
4.
5.

Density functional study of the interfacial electron transfer pathway for monolayer-adsorbed InN on the TiO(2) anatase (101) surface.

Lin JS, Chou WC, Lu SY, Jang GJ, Tseng BR, Li YT.

J Phys Chem B. 2006 Nov 23;110(46):23460-6.

PMID:
17107198
6.

Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.

Imahori H, Umeyama T, Ito S.

Acc Chem Res. 2009 Nov 17;42(11):1809-18. doi: 10.1021/ar900034t.

PMID:
19408942
7.

Porphyrins for dye-sensitised solar cells: new insights into efficiency-determining electron transfer steps.

Griffith MJ, Sunahara K, Wagner P, Wagner K, Wallace GG, Officer DL, Furube A, Katoh R, Mori S, Mozer AJ.

Chem Commun (Camb). 2012 May 4;48(35):4145-62. doi: 10.1039/c2cc30677h. Epub 2012 Mar 23.

PMID:
22441329
8.
9.
10.

Anharmonic vibrations of the carboxyl group in acetic acid on TiO2: implications for adsorption mode assignment in dye-sensitized solar cells.

Chan M, Carrington T, Manzhos S.

Phys Chem Chem Phys. 2013 Jul 7;15(25):10028-34. doi: 10.1039/c3cp00065f. Epub 2013 Mar 13.

PMID:
23486821
12.

How to Optimize the Interface between Photosensitizers and TiO2 Nanocrystals with Molecular Engineering to Enhance Performances of Dye-Sensitized Solar Cells?

Zheng J, Zhang K, Fang Y, Zuo Y, Duan Y, Zhuo Z, Chen X, Yang W, Lin Y, Wong MS, Pan F.

ACS Appl Mater Interfaces. 2015 Nov 18;7(45):25341-51. doi: 10.1021/acsami.5b07591. Epub 2015 Nov 6.

PMID:
26510212
13.

Characterization of solid-state dye-sensitized solar cells utilizing high absorption coefficient metal-free organic dyes.

Howie WH, Claeyssens F, Miura H, Peter LM.

J Am Chem Soc. 2008 Jan 30;130(4):1367-75. doi: 10.1021/ja076525+. Epub 2008 Jan 5.

PMID:
18177043
14.

Adsorption of organic dyes on TiO2 surfaces in dye-sensitized solar cells: interplay of theory and experiment.

Anselmi C, Mosconi E, Pastore M, Ronca E, De Angelis F.

Phys Chem Chem Phys. 2012 Dec 14;14(46):15963-74. doi: 10.1039/c2cp43006a.

PMID:
23108504
15.

Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: the minimization of kinetic redundancy.

Haque SA, Palomares E, Cho BM, Green AN, Hirata N, Klug DR, Durrant JR.

J Am Chem Soc. 2005 Mar 16;127(10):3456-62.

PMID:
15755165
16.

Distance and driving force dependencies of electron injection and recombination dynamics in organic dye-sensitized solar cells.

Wiberg J, Marinado T, Hagberg DP, Sun L, Hagfeldt A, Albinsson B.

J Phys Chem B. 2010 Nov 18;114(45):14358-63. doi: 10.1021/jp1002963. Epub 2010 Apr 9.

PMID:
20380364
17.

Molecular control of recombination dynamics in dye-sensitized nanocrystalline TiO2 films: free energy vs distance dependence.

Clifford JN, Palomares E, Nazeeruddin MK, Grätzel M, Nelson J, Li X, Long NJ, Durrant JR.

J Am Chem Soc. 2004 Apr 28;126(16):5225-33.

PMID:
15099107
18.

Interfacial electron-transfer kinetics in metal-free organic dye-sensitized solar cells: combined effects of molecular structure of dyes and electrolytes.

Miyashita M, Sunahara K, Nishikawa T, Uemura Y, Koumura N, Hara K, Mori A, Abe T, Suzuki E, Mori S.

J Am Chem Soc. 2008 Dec 31;130(52):17874-81. doi: 10.1021/ja803534u.

PMID:
19067515
19.

A strategy to increase the efficiency of the dye-sensitized TiO2 solar cells operated by photoexcitation of dye-to-TiO2 charge-transfer bands.

Tae EL, Lee SH, Lee JK, Yoo SS, Kang EJ, Yoon KB.

J Phys Chem B. 2005 Dec 1;109(47):22513-22.

PMID:
16853932
20.

An integrated experimental and theoretical approach to the spectroscopy of organic-dye-sensitized TiO₂ heterointerfaces: disentangling the effects of aggregation, solvation, and surface protonation.

Marotta G, Lobello MG, Anselmi C, Barozzino Consiglio G, Calamante M, Mordini A, Pastore M, De Angelis F.

Chemphyschem. 2014 Apr 14;15(6):1116-25. doi: 10.1002/cphc.201300923. Epub 2014 Jan 8.

PMID:
24402779

Supplemental Content

Support Center