Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 129

1.

Activating HER2 mutations in HER2 gene amplification negative breast cancer.

Bose R, Kavuri SM, Searleman AC, Shen W, Shen D, Koboldt DC, Monsey J, Goel N, Aronson AB, Li S, Ma CX, Ding L, Mardis ER, Ellis MJ.

Cancer Discov. 2013 Feb;3(2):224-37. doi: 10.1158/2159-8290.CD-12-0349. Epub 2012 Dec 7.

2.

HER2 activating mutations are targets for colorectal cancer treatment.

Kavuri SM, Jain N, Galimi F, Cottino F, Leto SM, Migliardi G, Searleman AC, Shen W, Monsey J, Trusolino L, Jacobs SA, Bertotti A, Bose R.

Cancer Discov. 2015 Aug;5(8):832-41. doi: 10.1158/2159-8290.CD-14-1211.

3.

Human breast cancer cells harboring a gatekeeper T798M mutation in HER2 overexpress EGFR ligands and are sensitive to dual inhibition of EGFR and HER2.

Rexer BN, Ghosh R, Narasanna A, Estrada MV, Chakrabarty A, Song Y, Engelman JA, Arteaga CL.

Clin Cancer Res. 2013 Oct 1;19(19):5390-401. doi: 10.1158/1078-0432.CCR-13-1038. Epub 2013 Aug 15.

4.

Grb7 upregulation is a molecular adaptation to HER2 signaling inhibition due to removal of Akt-mediated gene repression.

Nencioni A, Cea M, Garuti A, Passalacqua M, Raffaghello L, Soncini D, Moran E, Zoppoli G, Pistoia V, Patrone F, Ballestrero A.

PLoS One. 2010 Feb 2;5(2):e9024. doi: 10.1371/journal.pone.0009024.

5.

An heregulin-EGFR-HER3 autocrine signaling axis can mediate acquired lapatinib resistance in HER2+ breast cancer models.

Xia W, Petricoin EF 3rd, Zhao S, Liu L, Osada T, Cheng Q, Wulfkuhle JD, Gwin WR, Yang X, Gallagher RI, Bacus S, Lyerly HK, Spector NL.

Breast Cancer Res. 2013;15(5):R85.

6.

Novel Hsp90 inhibitor FW-04-806 displays potent antitumor effects in HER2-positive breast cancer cells as a single agent or in combination with lapatinib.

Huang W, Wu QD, Zhang M, Kong YL, Cao PR, Zheng W, Xu JH, Ye M.

Cancer Lett. 2015 Jan 28;356(2 Pt B):862-71. doi: 10.1016/j.canlet.2014.10.040. Epub 2014 Nov 4.

PMID:
25449780
7.

Roles of BIM induction and survivin downregulation in lapatinib-induced apoptosis in breast cancer cells with HER2 amplification.

Tanizaki J, Okamoto I, Fumita S, Okamoto W, Nishio K, Nakagawa K.

Oncogene. 2011 Sep 29;30(39):4097-106. doi: 10.1038/onc.2011.111. Epub 2011 Apr 18.

PMID:
21499301
8.

Different mechanisms for resistance to trastuzumab versus lapatinib in HER2-positive breast cancers--role of estrogen receptor and HER2 reactivation.

Wang YC, Morrison G, Gillihan R, Guo J, Ward RM, Fu X, Botero MF, Healy NA, Hilsenbeck SG, Phillips GL, Chamness GC, Rimawi MF, Osborne CK, Schiff R.

Breast Cancer Res. 2011;13(6):R121. doi: 10.1186/bcr3067. Epub 2011 Nov 28.

9.

Lapatinib restores hormone sensitivity with differential effects on estrogen receptor signaling in cell models of human epidermal growth factor receptor 2-negative breast cancer with acquired endocrine resistance.

Leary AF, Drury S, Detre S, Pancholi S, Lykkesfeldt AE, Martin LA, Dowsett M, Johnston SR.

Clin Cancer Res. 2010 Mar 1;16(5):1486-97. doi: 10.1158/1078-0432.CCR-09-1764. Epub 2010 Feb 23.

10.

Dacomitinib (PF-00299804), an irreversible Pan-HER inhibitor, inhibits proliferation of HER2-amplified breast cancer cell lines resistant to trastuzumab and lapatinib.

Kalous O, Conklin D, Desai AJ, O'Brien NA, Ginther C, Anderson L, Cohen DJ, Britten CD, Taylor I, Christensen JG, Slamon DJ, Finn RS.

Mol Cancer Ther. 2012 Sep;11(9):1978-87. doi: 10.1158/1535-7163.MCT-11-0730. Epub 2012 Jul 3.

11.

HER2-Mutated Breast Cancer Responds to Treatment With Single-Agent Neratinib, a Second-Generation HER2/EGFR Tyrosine Kinase Inhibitor.

Ben-Baruch NE, Bose R, Kavuri SM, Ma CX, Ellis MJ.

J Natl Compr Canc Netw. 2015 Sep;13(9):1061-4.

12.

HER2 mutation status in Japanese HER2-negative breast cancer patients.

Endo Y, Dong Y, Yoshimoto N, Asano T, Hato Y, Yamashita H, Sato S, Takahashi S, Fujii Y, Toyama T.

Jpn J Clin Oncol. 2014 Jul;44(7):619-23. doi: 10.1093/jjco/hyu053. Epub 2014 May 5.

PMID:
24803549
13.

HER2-positive breast cancer cells resistant to trastuzumab and lapatinib lose reliance upon HER2 and are sensitive to the multitargeted kinase inhibitor sorafenib.

Valabrega G, Capellero S, Cavalloni G, Zaccarello G, Petrelli A, Migliardi G, Milani A, Peraldo-Neia C, Gammaitoni L, Sapino A, Pecchioni C, Moggio A, Giordano S, Aglietta M, Montemurro F.

Breast Cancer Res Treat. 2011 Nov;130(1):29-40. doi: 10.1007/s10549-010-1281-5. Epub 2010 Dec 9.

PMID:
21153051
14.

A functional comparison between the HER2(high)/HER3 and the HER2(low)/HER3 dimers on heregulin-β1-induced MMP-1 and MMP-9 expression in breast cancer cells.

Kim S, Han J, Shin I, Kil WH, Lee JE, Nam SJ.

Exp Mol Med. 2012 Aug 31;44(8):473-82. doi: 10.3858/emm.2012.44.8.054.

15.

Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer.

Scaltriti M, Rojo F, Ocaña A, Anido J, Guzman M, Cortes J, Di Cosimo S, Matias-Guiu X, Ramon y Cajal S, Arribas J, Baselga J.

J Natl Cancer Inst. 2007 Apr 18;99(8):628-38.

PMID:
17440164
18.

Modulation of ErbB2 blockade in ErbB2-positive cancers: the role of ErbB2 Mutations and PHLDA1.

Li G, Wang X, Hibshoosh H, Jin C, Halmos B.

PLoS One. 2014 Sep 19;9(9):e106349. doi: 10.1371/journal.pone.0106349. eCollection 2014.

20.

A major role of p95/611-CTF, a carboxy-terminal fragment of HER2, in the down-modulation of the estrogen receptor in HER2-positive breast cancers.

Parra-Palau JL, Pedersen K, Peg V, Scaltriti M, Angelini PD, Escorihuela M, Mancilla S, Sánchez Pla A, Ramón Y Cajal S, Baselga J, Arribas J.

Cancer Res. 2010 Nov 1;70(21):8537-46. doi: 10.1158/0008-5472.CAN-10-1701. Epub 2010 Oct 26.

Supplemental Content

Support Center