Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 61


Insights into the regulation of human Rev1 for translesion synthesis polymerases revealed by the structural studies on its polymerase-interacting domain.

Liu D, Ryu KS, Ko J, Sun D, Lim K, Lee JO, Hwang Jm, Lee ZW, Choi BS.

J Mol Cell Biol. 2013 Jun;5(3):204-6. doi: 10.1093/jmcb/mjs061. Epub 2012 Dec 6. No abstract available.


The C-terminal domain of human Rev1 contains independent binding sites for DNA polymerase η and Rev7 subunit of polymerase ζ.

Pustovalova Y, Bezsonova I, Korzhnev DM.

FEBS Lett. 2012 Sep 21;586(19):3051-6. doi: 10.1016/j.febslet.2012.07.021. Epub 2012 Jul 22.


NMR structure and dynamics of the C-terminal domain from human Rev1 and its complex with Rev1 interacting region of DNA polymerase η.

Pozhidaeva A, Pustovalova Y, D'Souza S, Bezsonova I, Walker GC, Korzhnev DM.

Biochemistry. 2012 Jul 10;51(27):5506-20. Epub 2012 Jun 28.


Structure of the human Rev1-DNA-dNTP ternary complex.

Swan MK, Johnson RE, Prakash L, Prakash S, Aggarwal AK.

J Mol Biol. 2009 Jul 24;390(4):699-709. doi: 10.1016/j.jmb.2009.05.026. Epub 2009 May 21.


XRCC1 interaction with the REV1 C-terminal domain suggests a role in post replication repair.

Gabel SA, DeRose EF, London RE.

DNA Repair (Amst). 2013 Dec;12(12):1105-13.


Crystal structure of human REV7 in complex with a human REV3 fragment and structural implication of the interaction between DNA polymerase zeta and REV1.

Hara K, Hashimoto H, Murakumo Y, Kobayashi S, Kogame T, Unzai S, Akashi S, Takeda S, Shimizu T, Sato M.

J Biol Chem. 2010 Apr 16;285(16):12299-307. doi: 10.1074/jbc.M109.092403. Epub 2010 Feb 17.


Multifaceted recognition of vertebrate Rev1 by translesion polymerases ζ and κ.

Wojtaszek J, Liu J, D'Souza S, Wang S, Xue Y, Walker GC, Zhou P.

J Biol Chem. 2012 Jul 27;287(31):26400-8. doi: 10.1074/jbc.M112.380998. Epub 2012 Jun 14.


Kinetic analysis of translesion synthesis opposite bulky N2- and O6-alkylguanine DNA adducts by human DNA polymerase REV1.

Choi JY, Guengerich FP.

J Biol Chem. 2008 Aug 29;283(35):23645-55. doi: 10.1074/jbc.M801686200. Epub 2008 Jun 30.


Structural basis of recruitment of DNA polymerase ζ by interaction between REV1 and REV7 proteins.

Kikuchi S, Hara K, Shimizu T, Sato M, Hashimoto H.

J Biol Chem. 2012 Sep 28;287(40):33847-52. Epub 2012 Aug 2.


A non-catalytic function of Rev1 in translesion DNA synthesis and mutagenesis is mediated by its stable interaction with Rad5.

Kuang L, Kou H, Xie Z, Zhou Y, Feng X, Wang L, Wang Z.

DNA Repair (Amst). 2013 Jan 1;12(1):27-37. doi: 10.1016/j.dnarep.2012.10.003. Epub 2012 Nov 9.


Interaction with DNA polymerase eta is required for nuclear accumulation of REV1 and suppression of spontaneous mutations in human cells.

Akagi J, Masutani C, Kataoka Y, Kan T, Ohashi E, Mori T, Ohmori H, Hanaoka F.

DNA Repair (Amst). 2009 May 1;8(5):585-99. doi: 10.1016/j.dnarep.2008.12.006. Epub 2009 Jan 21.


Crystallization and X-ray diffraction analysis of the ternary complex of the C-terminal domain of human REV1 in complex with REV7 bound to a REV3 fragment involved in translesion DNA synthesis.

Kikuchi S, Hara K, Shimizu T, Sato M, Hashimoto H.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012 Aug 1;68(Pt 8):962-4. doi: 10.1107/S1744309112032435. Epub 2012 Jul 27.


Structural insights into the assembly of human translesion polymerase complexes.

Xie W, Yang X, Xu M, Jiang T.

Protein Cell. 2012 Nov;3(11):864-74. doi: 10.1007/s13238-012-2102-x. Epub 2012 Nov 10.


Sequential assembly of translesion DNA polymerases at UV-induced DNA damage sites.

Andersen PL, Xu F, Ziola B, McGregor WG, Xiao W.

Mol Biol Cell. 2011 Jul 1;22(13):2373-83. doi: 10.1091/mbc.E10-12-0938. Epub 2011 May 5.


Molecular chaperone Hsp90 regulates REV1-mediated mutagenesis.

Pozo FM, Oda T, Sekimoto T, Murakumo Y, Masutani C, Hanaoka F, Yamashita T.

Mol Cell Biol. 2011 Aug;31(16):3396-409. doi: 10.1128/MCB.05117-11. Epub 2011 Jun 20.


FANC pathway promotes UV-induced stalled replication forks recovery by acting both upstream and downstream Polη and Rev1.

Renaud E, Rosselli F.

PLoS One. 2013;8(1):e53693. doi: 10.1371/journal.pone.0053693. Epub 2013 Jan 24.


Roles of the polymerase and BRCT domains of Rev1 protein in translesion DNA synthesis in yeast in vivo.

Otsuka C, Kunitomi N, Iwai S, Loakes D, Negishi K.

Mutat Res. 2005 Oct 15;578(1-2):79-87.


Role of single-stranded DNA in targeting REV1 to primer termini.

Masuda Y, Kamiya K.

J Biol Chem. 2006 Aug 25;281(34):24314-21. Epub 2006 Jun 27.


Translesional DNA synthesis through a C8-guanyl adduct of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in Vitro: REV1 inserts dC opposite the lesion, and DNA polymerase kappa potentially catalyzes extension reaction from the 3'-dC terminus.

Fukuda H, Takamura-Enya T, Masuda Y, Nohmi T, Seki C, Kamiya K, Sugimura T, Masutani C, Hanaoka F, Nakagama H.

J Biol Chem. 2009 Sep 18;284(38):25585-92. doi: 10.1074/jbc.M109.037259. Epub 2009 Jul 23.


Effects of Twelve Germline Missense Variations on DNA Lesion and G-Quadruplex Bypass Activities of Human DNA Polymerase REV1.

Yeom M, Kim IH, Kim JK, Kang K, Eoff RL, Guengerich FP, Choi JY.

Chem Res Toxicol. 2016 Mar 21;29(3):367-79. doi: 10.1021/acs.chemrestox.5b00513. Epub 2016 Mar 4.

Supplemental Content

Support Center