Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 167

1.

Regional vulnerability in Huntington's disease: fMRI-guided molecular analysis in patients and a mouse model of disease.

Lewandowski NM, Bordelon Y, Brickman AM, Angulo S, Khan U, Muraskin J, Griffith EY, Wasserman P, Menalled L, Vonsattel JP, Marder K, Small SA, Moreno H.

Neurobiol Dis. 2013 Apr;52:84-93. doi: 10.1016/j.nbd.2012.11.014. Erratum in: Neurobiol Dis. 2013 Jun;54:115.

2.

Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage.

Kuhn A, Goldstein DR, Hodges A, Strand AD, Sengstag T, Kooperberg C, Becanovic K, Pouladi MA, Sathasivam K, Cha JH, Hannan AJ, Hayden MR, Leavitt BR, Dunnett SB, Ferrante RJ, Albin R, Shelbourne P, Delorenzi M, Augood SJ, Faull RL, Olson JM, Bates GP, Jones L, Luthi-Carter R.

Hum Mol Genet. 2007 Aug 1;16(15):1845-61.

PMID:
17519223
3.
4.

Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington's disease.

Hermel E, Gafni J, Propp SS, Leavitt BR, Wellington CL, Young JE, Hackam AS, Logvinova AV, Peel AL, Chen SF, Hook V, Singaraja R, Krajewski S, Goldsmith PC, Ellerby HM, Hayden MR, Bredesen DE, Ellerby LM.

Cell Death Differ. 2004 Apr;11(4):424-38.

5.
6.

BDNF overexpression in the forebrain rescues Huntington's disease phenotypes in YAC128 mice.

Xie Y, Hayden MR, Xu B.

J Neurosci. 2010 Nov 3;30(44):14708-18. doi: 10.1523/JNEUROSCI.1637-10.2010.

7.

Genetic manipulations of mutant huntingtin in mice: new insights into Huntington's disease pathogenesis.

Lee CY, Cantle JP, Yang XW.

FEBS J. 2013 Sep;280(18):4382-94. doi: 10.1111/febs.12418. Review.

8.

Full length mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington's disease.

Zhang H, Li Q, Graham RK, Slow E, Hayden MR, Bezprozvanny I.

Neurobiol Dis. 2008 Jul;31(1):80-8. doi: 10.1016/j.nbd.2008.03.010.

9.

Widespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy at its target genes in Huntington's disease.

Zuccato C, Belyaev N, Conforti P, Ooi L, Tartari M, Papadimou E, MacDonald M, Fossale E, Zeitlin S, Buckley N, Cattaneo E.

J Neurosci. 2007 Jun 27;27(26):6972-83.

10.

Polyglutamine-modulated striatal calpain activity in YAC transgenic huntington disease mouse model: impact on NMDA receptor function and toxicity.

Cowan CM, Fan MM, Fan J, Shehadeh J, Zhang LY, Graham RK, Hayden MR, Raymond LA.

J Neurosci. 2008 Nov 26;28(48):12725-35. doi: 10.1523/JNEUROSCI.4619-08.2008.

11.

Transgenic mice expressing mutated full-length HD cDNA: a paradigm for locomotor changes and selective neuronal loss in Huntington's disease.

Reddy PH, Charles V, Williams M, Miller G, Whetsell WO Jr, Tagle DA.

Philos Trans R Soc Lond B Biol Sci. 1999 Jun 29;354(1386):1035-45.

12.

Protein kinase C beta II mRNA levels decrease in the striatum and cortex of transgenic Huntington's disease mice.

Harris AS, Denovan-Wright EM, Hamilton LC, Robertson HA.

J Psychiatry Neurosci. 2001 Mar;26(2):117-22.

13.

Selective degeneration and nuclear localization of mutant huntingtin in the YAC128 mouse model of Huntington disease.

Van Raamsdonk JM, Murphy Z, Slow EJ, Leavitt BR, Hayden MR.

Hum Mol Genet. 2005 Dec 15;14(24):3823-35.

PMID:
16278236
14.

Alterations in N-methyl-D-aspartate receptor sensitivity and magnesium blockade occur early in development in the R6/2 mouse model of Huntington's disease.

Starling AJ, André VM, Cepeda C, de Lima M, Chandler SH, Levine MS.

J Neurosci Res. 2005 Nov 1;82(3):377-86.

PMID:
16211559
15.
16.

Characterization of HTT inclusion size, location, and timing in the zQ175 mouse model of Huntington's disease: an in vivo high-content imaging study.

Carty N, Berson N, Tillack K, Thiede C, Scholz D, Kottig K, Sedaghat Y, Gabrysiak C, Yohrling G, von der Kammer H, Ebneth A, Mack V, Munoz-Sanjuan I, Kwak S.

PLoS One. 2015 Apr 10;10(4):e0123527. doi: 10.1371/journal.pone.0123527.

17.

Cerebrovascular and blood-brain barrier impairments in Huntington's disease: Potential implications for its pathophysiology.

Drouin-Ouellet J, Sawiak SJ, Cisbani G, Lagacé M, Kuan WL, Saint-Pierre M, Dury RJ, Alata W, St-Amour I, Mason SL, Calon F, Lacroix S, Gowland PA, Francis ST, Barker RA, Cicchetti F.

Ann Neurol. 2015 Aug;78(2):160-77. doi: 10.1002/ana.24406.

PMID:
25866151
18.

A critical window of CAG repeat-length correlates with phenotype severity in the R6/2 mouse model of Huntington's disease.

Cummings DM, Alaghband Y, Hickey MA, Joshi PR, Hong SC, Zhu C, Ando TK, André VM, Cepeda C, Watson JB, Levine MS.

J Neurophysiol. 2012 Jan;107(2):677-91. doi: 10.1152/jn.00762.2011.

19.

In vivo cell-autonomous transcriptional abnormalities revealed in mice expressing mutant huntingtin in striatal but not cortical neurons.

Thomas EA, Coppola G, Tang B, Kuhn A, Kim S, Geschwind DH, Brown TB, Luthi-Carter R, Ehrlich ME.

Hum Mol Genet. 2011 Mar 15;20(6):1049-60. doi: 10.1093/hmg/ddq548.

20.

Reduced expression of the TrkB receptor in Huntington's disease mouse models and in human brain.

Ginés S, Bosch M, Marco S, Gavaldà N, Díaz-Hernández M, Lucas JJ, Canals JM, Alberch J.

Eur J Neurosci. 2006 Feb;23(3):649-58.

PMID:
16487146
Items per page

Supplemental Content

Support Center