Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria.

Liu B, Ghosh S, Yang X, Zheng H, Liu X, Wang Z, Jin G, Zheng B, Kennedy BK, Suh Y, Kaeberlein M, Tryggvason K, Zhou Z.

Cell Metab. 2012 Dec 5;16(6):738-50. doi: 10.1016/j.cmet.2012.11.007.

2.

Resveratrol activates SIRT1 in a Lamin A-dependent manner.

Ghosh S, Liu B, Zhou Z.

Cell Cycle. 2013 Mar 15;12(6):872-6. doi: 10.4161/cc.24061. Epub 2013 Feb 25.

3.

Depleting the methyltransferase Suv39h1 improves DNA repair and extends lifespan in a progeria mouse model.

Liu B, Wang Z, Zhang L, Ghosh S, Zheng H, Zhou Z.

Nat Commun. 2013;4:1868. doi: 10.1038/ncomms2885.

4.

HP1α mediates defective heterochromatin repair and accelerates senescence in Zmpste24-deficient cells.

Liu J, Yin X, Liu B, Zheng H, Zhou G, Gong L, Li M, Li X, Wang Y, Hu J, Krishnan V, Zhou Z, Wang Z.

Cell Cycle. 2014;13(8):1237-47. doi: 10.4161/cc.28105. Epub 2014 Feb 14.

5.

Blocking protein farnesyltransferase improves nuclear shape in fibroblasts from humans with progeroid syndromes.

Toth JI, Yang SH, Qiao X, Beigneux AP, Gelb MH, Moulson CL, Miner JH, Young SG, Fong LG.

Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12873-8. Epub 2005 Aug 29.

6.

[A-type lamins and progeroïd syndromes : persistent farnesylation with dramatic effects].

Navarro CL, Poitelon Y, Lévy N.

Med Sci (Paris). 2008 Oct;24(10):833-40. doi: 10.1051/medsci/20082410833. Review. French.

7.

Histone H4 lysine 16 hypoacetylation is associated with defective DNA repair and premature senescence in Zmpste24-deficient mice.

Krishnan V, Chow MZ, Wang Z, Zhang L, Liu B, Liu X, Zhou Z.

Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12325-30. doi: 10.1073/pnas.1102789108. Epub 2011 Jul 11.

8.

Heterozygosity for Lmna deficiency eliminates the progeria-like phenotypes in Zmpste24-deficient mice.

Fong LG, Ng JK, Meta M, Coté N, Yang SH, Stewart CL, Sullivan T, Burghardt A, Majumdar S, Reue K, Bergo MO, Young SG.

Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18111-6. Epub 2004 Dec 17.

9.

Blocking farnesylation of the prelamin A variant in Hutchinson-Gilford progeria syndrome alters the distribution of A-type lamins.

Wang Y, Ostlund C, Choi JC, Swayne TC, Gundersen GG, Worman HJ.

Nucleus. 2012 Sep-Oct;3(5):452-62. doi: 10.4161/nucl.21675. Epub 2012 Aug 16.

10.

Type B mandibuloacral dysplasia with congenital myopathy due to homozygous ZMPSTE24 missense mutation.

Ben Yaou R, Navarro C, Quijano-Roy S, Bertrand AT, Massart C, De Sandre-Giovannoli A, Cadiñanos J, Mamchaoui K, Butler-Browne G, Estournet B, Richard P, Barois A, Lévy N, Bonne G.

Eur J Hum Genet. 2011 Jun;19(6):647-54. doi: 10.1038/ejhg.2010.256. Epub 2011 Jan 26.

11.

Prelamin A causes progeria through cell-extrinsic mechanisms and prevents cancer invasion.

de la Rosa J, Freije JM, Cabanillas R, Osorio FG, Fraga MF, Fernández-García MS, Rad R, Fanjul V, Ugalde AP, Liang Q, Prosser HM, Bradley A, Cadiñanos J, López-Otín C.

Nat Commun. 2013;4:2268. doi: 10.1038/ncomms3268.

12.

Prelamin A processing, accumulation and distribution in normal cells and laminopathy disorders.

Casasola A, Scalzo D, Nandakumar V, Halow J, Recillas-Targa F, Groudine M, Rincón-Arano H.

Nucleus. 2016;7(1):84-102. doi: 10.1080/19491034.2016.1150397.

13.

New Lmna knock-in mice provide a molecular mechanism for the 'segmental aging' in Hutchinson-Gilford progeria syndrome.

Jung HJ, Tu Y, Yang SH, Tatar A, Nobumori C, Wu D, Young SG, Fong LG.

Hum Mol Genet. 2014 Mar 15;23(6):1506-15. doi: 10.1093/hmg/ddt537. Epub 2013 Nov 7.

14.

Embryonic senescence and laminopathies in a progeroid zebrafish model.

Koshimizu E, Imamura S, Qi J, Toure J, Valdez DM Jr, Carr CE, Hanai J, Kishi S.

PLoS One. 2011 Mar 30;6(3):e17688. doi: 10.1371/journal.pone.0017688.

15.

Autophagic degradation of farnesylated prelamin A as a therapeutic approach to lamin-linked progeria.

Cenni V, Capanni C, Columbaro M, Ortolani M, D'Apice MR, Novelli G, Fini M, Marmiroli S, Scarano E, Maraldi NM, Squarzoni S, Prencipe S, Lattanzi G.

Eur J Histochem. 2011 Oct 19;55(4):e36. doi: 10.4081/ejh.2011.e36. Erratum in: Eur J Histochem. 2013;57(4):e42.

16.

ZMPSTE24, an integral membrane zinc metalloprotease with a connection to progeroid disorders.

Barrowman J, Michaelis S.

Biol Chem. 2009 Aug;390(8):761-73. doi: 10.1515/BC.2009.080. Review.

PMID:
19453269
17.

Hutchinson-Gilford progeria syndrome through the lens of transcription.

Prokocimer M, Barkan R, Gruenbaum Y.

Aging Cell. 2013 Aug;12(4):533-43. doi: 10.1111/acel.12070. Epub 2013 Apr 19. Review.

18.

Absence of progeria-like disease phenotypes in knock-in mice expressing a non-farnesylated version of progerin.

Yang SH, Chang SY, Ren S, Wang Y, Andres DA, Spielmann HP, Fong LG, Young SG.

Hum Mol Genet. 2011 Feb 1;20(3):436-44. doi: 10.1093/hmg/ddq490. Epub 2010 Nov 18.

19.

Prelamin A and lamin A appear to be dispensable in the nuclear lamina.

Fong LG, Ng JK, Lammerding J, Vickers TA, Meta M, Coté N, Gavino B, Qiao X, Chang SY, Young SR, Yang SH, Stewart CL, Lee RT, Bennett CF, Bergo MO, Young SG.

J Clin Invest. 2006 Mar;116(3):743-52.

20.

The truncated prelamin A in Hutchinson-Gilford progeria syndrome alters segregation of A-type and B-type lamin homopolymers.

Delbarre E, Tramier M, Coppey-Moisan M, Gaillard C, Courvalin JC, Buendia B.

Hum Mol Genet. 2006 Apr 1;15(7):1113-22. Epub 2006 Feb 15.

PMID:
16481358

Supplemental Content

Support Center