Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

Systematic review: diet-gene interactions and the risk of colorectal cancer.

Andersen V, Holst R, Vogel U.

Aliment Pharmacol Ther. 2013 Feb;37(4):383-91. doi: 10.1111/apt.12180. Review.

2.

Interaction between interleukin-10 (IL-10) polymorphisms and dietary fibre in relation to risk of colorectal cancer in a Danish case-cohort study.

Andersen V, Egeberg R, Tjønneland A, Vogel U.

BMC Cancer. 2012 May 17;12:183. doi: 10.1186/1471-2407-12-183.

3.

Interactions between meat intake and genetic variation in relation to colorectal cancer.

Andersen V, Vogel U.

Genes Nutr. 2015 Jan;10(1):448. doi: 10.1007/s12263-014-0448-9.

4.

Interactions between diet, lifestyle and IL10, IL1B, and PTGS2/COX-2 gene polymorphisms in relation to risk of colorectal cancer in a prospective Danish case-cohort study.

Andersen V, Holst R, Kopp TI, Tjønneland A, Vogel U.

PLoS One. 2013 Oct 23;8(10):e78366. doi: 10.1371/journal.pone.0078366.

5.

N-Acetyltransferase 2 genetic polymorphisms and risk of colorectal cancer.

da Silva TD, Felipe AV, de Lima JM, Oshima CT, Forones NM.

World J Gastroenterol. 2011 Feb 14;17(6):760-5. doi: 10.3748/wjg.v17.i6.760.

6.

Polymorphisms in the xenobiotic transporter Multidrug Resistance 1 (MDR1) and interaction with meat intake in relation to risk of colorectal cancer in a Danish prospective case-cohort study.

Andersen V, Ostergaard M, Christensen J, Overvad K, Tjønneland A, Vogel U.

BMC Cancer. 2009 Nov 21;9:407. doi: 10.1186/1471-2407-9-407.

7.

Prospective study of NAT1 and NAT2 polymorphisms, tobacco smoking and meat consumption and risk of colorectal cancer.

Sørensen M, Autrup H, Olsen A, Tjønneland A, Overvad K, Raaschou-Nielsen O.

Cancer Lett. 2008 Aug 8;266(2):186-93. doi: 10.1016/j.canlet.2008.02.046.

PMID:
18372103
8.

Combined effects of well-done red meat, smoking, and rapid N-acetyltransferase 2 and CYP1A2 phenotypes in increasing colorectal cancer risk.

Le Marchand L, Hankin JH, Wilkens LR, Pierce LM, Franke A, Kolonel LN, Seifried A, Custer LJ, Chang W, Lum-Jones A, Donlon T.

Cancer Epidemiol Biomarkers Prev. 2001 Dec;10(12):1259-66.

9.

Red meat intake, NAT2, and risk of colorectal cancer: a pooled analysis of 11 studies.

Ananthakrishnan AN, Du M, Berndt SI, Brenner H, Caan BJ, Casey G, Chang-Claude J, Duggan D, Fuchs CS, Gallinger S, Giovannucci EL, Harrison TA, Hayes RB, Hoffmeister M, Hopper JL, Hou L, Hsu L, Jenkins MA, Kraft P, Ma J, Nan H, Newcomb PA, Ogino S, Potter JD, Seminara D, Slattery ML, Thornquist M, White E, Wu K, Peters U, Chan AT.

Cancer Epidemiol Biomarkers Prev. 2015 Jan;24(1):198-205. doi: 10.1158/1055-9965.EPI-14-0897.

10.

A prospective study of N-acetyltransferase genotype, red meat intake, and risk of colorectal cancer.

Chen J, Stampfer MJ, Hough HL, Garcia-Closas M, Willett WC, Hennekens CH, Kelsey KT, Hunter DJ.

Cancer Res. 1998 Aug 1;58(15):3307-11.

11.

Interaction between Red Meat Intake and NAT2 Genotype in Increasing the Risk of Colorectal Cancer in Japanese and African Americans.

Wang H, Iwasaki M, Haiman CA, Kono S, Wilkens LR, Keku TO, Berndt SI, Tsugane S, Le Marchand L.

PLoS One. 2015 Dec 18;10(12):e0144955. doi: 10.1371/journal.pone.0144955.

12.

Effect of NAT1 and NAT2 genetic polymorphisms on colorectal cancer risk associated with exposure to tobacco smoke and meat consumption.

Lilla C, Verla-Tebit E, Risch A, Jäger B, Hoffmeister M, Brenner H, Chang-Claude J.

Cancer Epidemiol Biomarkers Prev. 2006 Jan;15(1):99-107.

13.

Vegetable, fruit and meat consumption and potential risk modifying genes in relation to colorectal cancer.

Turner F, Smith G, Sachse C, Lightfoot T, Garner RC, Wolf CR, Forman D, Bishop DT, Barrett JH.

Int J Cancer. 2004 Nov 1;112(2):259-64.

14.

Genetic polymorphisms in heterocyclic amine metabolism and risk of colorectal adenomas.

Ishibe N, Sinha R, Hein DW, Kulldorff M, Strickland P, Fretland AJ, Chow WH, Kadlubar FF, Lang NP, Rothman N.

Pharmacogenetics. 2002 Mar;12(2):145-50.

PMID:
11875368
15.

Well-done red meat, metabolic phenotypes and colorectal cancer in Hawaii.

Le Marchand L, Hankin JH, Pierce LM, Sinha R, Nerurkar PV, Franke AA, Wilkens LR, Kolonel LN, Donlon T, Seifried A, Custer LJ, Lum-Jones A, Chang W.

Mutat Res. 2002 Sep 30;506-507:205-14. Review.

PMID:
12351160
16.

Processed and Unprocessed Red Meat and Risk of Colorectal Cancer: Analysis by Tumor Location and Modification by Time.

Bernstein AM, Song M, Zhang X, Pan A, Wang M, Fuchs CS, Le N, Chan AT, Willett WC, Ogino S, Giovannucci EL, Wu K.

PLoS One. 2015 Aug 25;10(8):e0135959. doi: 10.1371/journal.pone.0135959.

17.

Polymorphisms in NFkB, PXR, LXR and risk of colorectal cancer in a prospective study of Danes.

Andersen V, Christensen J, Overvad K, Tjønneland A, Vogel U.

BMC Cancer. 2010 Sep 13;10:484. doi: 10.1186/1471-2407-10-484.

18.

Prospective study of N-acetyltransferase-2 genotypes, meat intake, smoking and risk of colorectal cancer.

Chan AT, Tranah GJ, Giovannucci EL, Willett WC, Hunter DJ, Fuchs CS.

Int J Cancer. 2005 Jul 1;115(4):648-52.

19.

Meat consumption, cigarette smoking, and genetic susceptibility in the etiology of colorectal cancer: results from a Dutch prospective study.

Tiemersma EW, Kampman E, Bueno de Mesquita HB, Bunschoten A, van Schothorst EM, Kok FJ, Kromhout D.

Cancer Causes Control. 2002 May;13(4):383-93.

PMID:
12074508
20.

Carcinogen metabolism genes, red meat and poultry intake, and colorectal cancer risk.

Wang J, Joshi AD, Corral R, Siegmund KD, Marchand LL, Martinez ME, Haile RW, Ahnen DJ, Sandler RS, Lance P, Stern MC.

Int J Cancer. 2012 Apr 15;130(8):1898-907. doi: 10.1002/ijc.26199.

Items per page

Supplemental Content

Support Center