Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 185

1.

Tracking the mechanism of fibril assembly by simulated two-dimensional ultraviolet spectroscopy.

Lam AR, Rodriguez JJ, Rojas A, Scheraga HA, Mukamel S.

J Phys Chem A. 2013 Jan 17;117(2):342-50. doi: 10.1021/jp3101267. Epub 2013 Jan 7.

2.

Distinguishing amyloid fibril structures in Alzheimer's disease (AD) by two-dimensional ultraviolet (2DUV) spectroscopy.

Lam AR, Jiang J, Mukamel S.

Biochemistry. 2011 Nov 15;50(45):9809-16. doi: 10.1021/bi201317c. Epub 2011 Oct 20. Erratum in: Biochemistry. 2012 Aug 7;51(31):6262.

3.

How do membranes initiate Alzheimer's Disease? Formation of toxic amyloid fibrils by the amyloid β-protein on ganglioside clusters.

Matsuzaki K.

Acc Chem Res. 2014 Aug 19;47(8):2397-404. doi: 10.1021/ar500127z. Epub 2014 Jul 16.

PMID:
25029558
4.

Simulation of two-dimensional ultraviolet spectroscopy of amyloid fibrils.

Jiang J, Abramavicius D, Falvo C, Bulheller BM, Hirst JD, Mukamel S.

J Phys Chem B. 2010 Sep 23;114(37):12150-6. doi: 10.1021/jp1046968.

5.

Role of water in protein aggregation and amyloid polymorphism.

Thirumalai D, Reddy G, Straub JE.

Acc Chem Res. 2012 Jan 17;45(1):83-92. doi: 10.1021/ar2000869. Epub 2011 Jul 15.

6.

Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.

Nguyen P, Derreumaux P.

Acc Chem Res. 2014 Feb 18;47(2):603-11. doi: 10.1021/ar4002075. Epub 2013 Dec 24. Review.

PMID:
24368046
7.

Seeded growth of beta-amyloid fibrils from Alzheimer's brain-derived fibrils produces a distinct fibril structure.

Paravastu AK, Qahwash I, Leapman RD, Meredith SC, Tycko R.

Proc Natl Acad Sci U S A. 2009 May 5;106(18):7443-8. doi: 10.1073/pnas.0812033106. Epub 2009 Apr 17.

8.

Phosphorylation at Ser8 as an Intrinsic Regulatory Switch to Regulate the Morphologies and Structures of Alzheimer's 40-residue β-Amyloid (Aβ40) Fibrils.

Hu ZW, Ma MR, Chen YX, Zhao YF, Qiang W, Li YM.

J Biol Chem. 2017 Feb 17;292(7):2611-2623. doi: 10.1074/jbc.M116.757179. Epub 2016 Dec 28. Erratum in: J Biol Chem. 2017 May 26;292(21):8846.

PMID:
28031462
9.

Impact of sequence on the molecular assembly of short amyloid peptides.

Wagoner VA, Cheon M, Chang I, Hall CK.

Proteins. 2014 Jul;82(7):1469-83. doi: 10.1002/prot.24515. Epub 2014 Feb 18.

10.

Mechanism of fiber assembly: treatment of Aβ peptide aggregation with a coarse-grained united-residue force field.

Rojas A, Liwo A, Browne D, Scheraga HA.

J Mol Biol. 2010 Dec 3;404(3):537-52. doi: 10.1016/j.jmb.2010.09.057. Epub 2010 Oct 1.

11.

Elucidating Important Sites and the Mechanism for Amyloid Fibril Formation by Coarse-Grained Molecular Dynamics.

Rojas A, Maisuradze N, Kachlishvili K, Scheraga HA, Maisuradze GG.

ACS Chem Neurosci. 2017 Jan 18;8(1):201-209. doi: 10.1021/acschemneuro.6b00331. Epub 2016 Nov 18.

PMID:
28095675
12.

In silico and in vitro studies to elucidate the role of Cu2+ and galanthamine as the limiting step in the amyloid beta (1-42) fibrillation process.

Hernández-Rodríguez M, Correa-Basurto J, Benitez-Cardoza CG, Resendiz-Albor AA, Rosales-Hernández MC.

Protein Sci. 2013 Oct;22(10):1320-35. doi: 10.1002/pro.2319. Epub 2013 Aug 19.

13.

Probing amyloid fibril growth by two-dimensional near-ultraviolet spectroscopy.

Jiang J, Mukamel S.

J Phys Chem B. 2011 May 19;115(19):6321-8. doi: 10.1021/jp201164u. Epub 2011 Apr 25.

14.

Two distinct amyloid beta-protein (Abeta) assembly pathways leading to oligomers and fibrils identified by combined fluorescence correlation spectroscopy, morphology, and toxicity analyses.

Matsumura S, Shinoda K, Yamada M, Yokojima S, Inoue M, Ohnishi T, Shimada T, Kikuchi K, Masui D, Hashimoto S, Sato M, Ito A, Akioka M, Takagi S, Nakamura Y, Nemoto K, Hasegawa Y, Takamoto H, Inoue H, Nakamura S, Nabeshima Y, Teplow DB, Kinjo M, Hoshi M.

J Biol Chem. 2011 Apr 1;286(13):11555-62. doi: 10.1074/jbc.M110.181313. Epub 2011 Feb 3.

15.

Structural polymorphism of Alzheimer Abeta and other amyloid fibrils.

Fändrich M, Meinhardt J, Grigorieff N.

Prion. 2009 Apr-Jun;3(2):89-93. Review.

16.

Two-dimensional near-ultraviolet spectroscopy of aromatic residues in amyloid fibrils: a first principles study.

Jiang J, Mukamel S.

Phys Chem Chem Phys. 2011 Feb 14;13(6):2394-400. doi: 10.1039/c0cp02047h. Epub 2010 Dec 6.

17.

On the lack of polymorphism in Aβ-peptide aggregates derived from patient brains.

Alred EJ, Phillips M, Berhanu WM, Hansmann UH.

Protein Sci. 2015 Jun;24(6):923-35. doi: 10.1002/pro.2668. Epub 2015 Apr 14.

18.

Recent progress in understanding Alzheimer's β-amyloid structures.

Fändrich M, Schmidt M, Grigorieff N.

Trends Biochem Sci. 2011 Jun;36(6):338-45. doi: 10.1016/j.tibs.2011.02.002. Epub 2011 Mar 14. Review.

19.

Molecular structure of β-amyloid fibrils in Alzheimer's disease brain tissue.

Lu JX, Qiang W, Yau WM, Schwieters CD, Meredith SC, Tycko R.

Cell. 2013 Sep 12;154(6):1257-68. doi: 10.1016/j.cell.2013.08.035.

20.

Role of the N-terminus for the stability of an amyloid-β fibril with three-fold symmetry.

Söldner CA, Sticht H, Horn AHC.

PLoS One. 2017 Oct 12;12(10):e0186347. doi: 10.1371/journal.pone.0186347. eCollection 2017. Erratum in: PLoS One. 2017 Dec 4;12 (12 ):e0189238.

Supplemental Content

Support Center