Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 97

1.

Role of red blood cell elastic properties in capillary occlusions.

Božič B, Gomišček G.

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 1):051902. Epub 2012 Nov 2.

PMID:
23214809
2.

The deformation behavior of multiple red blood cells in a capillary vessel.

Gong X, Sugiyama K, Takagi S, Matsumoto Y.

J Biomech Eng. 2009 Jul;131(7):074504. doi: 10.1115/1.3127255.

PMID:
19640140
3.

Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion.

Tsubota K, Wada S, Liu H.

Biomech Model Mechanobiol. 2014 Aug;13(4):735-46. doi: 10.1007/s10237-013-0530-z. Epub 2013 Oct 9. Erratum in: Biomech Model Mechanobiol. 2014 Aug;13(4):915.

PMID:
24104211
4.

The cooperative role of membrane skeleton and bilayer in the mechanical behaviour of red blood cells.

Svetina S, Kuzman D, Waugh RE, Ziherl P, Zeks B.

Bioelectrochemistry. 2004 May;62(2):107-13. Review.

PMID:
15039011
5.

Lateral migration and equilibrium shape and position of a single red blood cell in bounded Poiseuille flows.

Shi L, Pan TW, Glowinski R.

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 2):056308. Epub 2012 Nov 13.

PMID:
23214877
6.

Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels.

Secomb TW, Styp-Rekowska B, Pries AR.

Ann Biomed Eng. 2007 May;35(5):755-65. Epub 2007 Mar 23.

PMID:
17380392
7.

Tank-treading of swollen erythrocytes in shear flows.

Dodson WR 3rd, Dimitrakopoulos P.

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Feb;85(2 Pt 1):021922. Epub 2012 Feb 27.

8.
9.

Identification of capillary blood pressure levels at which capillary collapse is likely in a tissue subjected to large compressive and shear deformations.

Shilo M, Gefen A.

Comput Methods Biomech Biomed Engin. 2012;15(1):59-71. doi: 10.1080/10255842.2010.539208. Epub 2011 Sep 9.

PMID:
21181574
10.

Motion of red blood cells in capillaries with variable cross-sections.

Secomb TW, Hsu R.

J Biomech Eng. 1996 Nov;118(4):538-44.

PMID:
8950658
11.

Simulation of neutrophil deformation and transport in capillaries using newtonian and viscoelastic drop models.

Zhou C, Yue P, Feng JJ.

Ann Biomed Eng. 2007 May;35(5):766-80. Epub 2007 Mar 23.

PMID:
17380390
12.

Effect of the natural state of an elastic cellular membrane on tank-treading and tumbling motions of a single red blood cell.

Tsubota K, Wada S.

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jan;81(1 Pt 1):011910. Epub 2010 Jan 20.

PMID:
20365402
13.

Numerical simulation of the flow-induced deformation of red blood cells.

Pozrikidis C.

Ann Biomed Eng. 2003 Nov;31(10):1194-205.

PMID:
14649493
14.

Correlations between the experimental and numerical investigations on the mechanical properties of erythrocyte by laser stretching.

Li C, Liu YP, Liu KK, Lai AK.

IEEE Trans Nanobioscience. 2008 Mar;7(1):80-90. doi: 10.1109/TNB.2008.2000152.

PMID:
18334458
15.

Shapes of red blood cells during micropipette aspiration.

Pai BK.

Biorheology. 1982;19(1/2):137-41.

PMID:
7093447
17.

Mechanical modeling of red blood cells during optical stretching.

Tan Y, Sun D, Huang W.

J Biomech Eng. 2010 Apr;132(4):044504. doi: 10.1115/1.4001042.

PMID:
20387977
18.

Amphiphile induced echinocyte-spheroechinocyte transformation of red blood cell shape.

Iglic A, Kralj-Iglic V, Hägerstrand H.

Eur Biophys J. 1998;27(4):335-9.

PMID:
9691462
19.

Flow-dependent rheological properties of blood in capillaries.

Secomb TW.

Microvasc Res. 1987 Jul;34(1):46-58.

PMID:
3657604
20.

A model for red blood cell motion in glycocalyx-lined capillaries.

Secomb TW, Hsu R, Pries AR.

Am J Physiol. 1998 Mar;274(3 Pt 2):H1016-22.

Supplemental Content

Support Center