Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 124

1.

Natural diversity in the model legume Medicago truncatula allows identifying distinct genetic mechanisms conferring partial resistance to Verticillium wilt.

Ben C, Toueni M, Montanari S, Tardin MC, Fervel M, Negahi A, Saint-Pierre L, Mathieu G, Gras MC, Noël D, Prospéri JM, Pilet-Nayel ML, Baranger A, Huguet T, Julier B, Rickauer M, Gentzbittel L.

J Exp Bot. 2013 Jan;64(1):317-32. doi: 10.1093/jxb/ers337. Epub 2012 Dec 3.

2.

Characterization of the interaction between the bacterial wilt pathogen Ralstonia solanacearum and the model legume plant Medicago truncatula.

Vailleau F, Sartorel E, Jardinaud MF, Chardon F, Genin S, Huguet T, Gentzbittel L, Petitprez M.

Mol Plant Microbe Interact. 2007 Feb;20(2):159-67.

3.

MtQRRS1, an R-locus required for Medicago truncatula quantitative resistance to Ralstonia solanacearum.

Ben C, Debellé F, Berges H, Bellec A, Jardinaud MF, Anson P, Huguet T, Gentzbittel L, Vailleau F.

New Phytol. 2013 Aug;199(3):758-72. doi: 10.1111/nph.12299. Epub 2013 May 2.

4.

Identification and characterization of resistance to cowpea aphid (Aphis craccivora Koch) in Medicago truncatula.

Kamphuis LG, Gao L, Singh KB.

BMC Plant Biol. 2012 Jul 4;12:101. doi: 10.1186/1471-2229-12-101.

5.

Partial resistance of Medicago truncatula to Aphanomyces euteiches is associated with protection of the root stele and is controlled by a major QTL rich in proteasome-related genes.

Djébali N, Jauneau A, Ameline-Torregrosa C, Chardon F, Jaulneau V, Mathé C, Bottin A, Cazaux M, Pilet-Nayel ML, Baranger A, Aouani ME, Esquerré-Tugayé MT, Dumas B, Huguet T, Jacquet C.

Mol Plant Microbe Interact. 2009 Sep;22(9):1043-55. doi: 10.1094/MPMI-22-9-1043.

6.

Identification of molecular markers associated with Verticillium wilt resistance in alfalfa (Medicago sativa L.) using high-resolution melting.

Zhang T, Yu LX, McCord P, Miller D, Bhamidimarri S, Johnson D, Monteros MJ, Ho J, Reisen P, Samac DA.

PLoS One. 2014 Dec 23;9(12):e115953. doi: 10.1371/journal.pone.0115953. eCollection 2014.

7.

Medicago truncatula symbiosis mutants affected in the interaction with a biotrophic root pathogen.

Rey T, Chatterjee A, Buttay M, Toulotte J, Schornack S.

New Phytol. 2015 Apr;206(2):497-500. doi: 10.1111/nph.13233. Epub 2014 Dec 11. No abstract available.

8.

Genetic dissection of resistance to anthracnose and powdery mildew in Medicago truncatula.

Ameline-Torregrosa C, Cazaux M, Danesh D, Chardon F, Cannon SB, Esquerré-Tugayé MT, Dumas B, Young ND, Samac DA, Huguet T, Jacquet C.

Mol Plant Microbe Interact. 2008 Jan;21(1):61-9.

10.

Genetic structure, linkage disequilibrium and association mapping of Verticillium wilt resistance in elite cotton (Gossypium hirsutum L.) germplasm population.

Zhao Y, Wang H, Chen W, Li Y.

PLoS One. 2014 Jan 23;9(1):e86308. doi: 10.1371/journal.pone.0086308. eCollection 2014.

11.

The B-3 ethylene response factor MtERF1-1 mediates resistance to a subset of root pathogens in Medicago truncatula without adversely affecting symbiosis with rhizobia.

Anderson JP, Lichtenzveig J, Gleason C, Oliver RP, Singh KB.

Plant Physiol. 2010 Oct;154(2):861-73. doi: 10.1104/pp.110.163949. Epub 2010 Aug 16.

12.

High-density genome-wide association mapping implicates an F-box encoding gene in Medicago truncatula resistance to Aphanomyces euteiches.

Bonhomme M, André O, Badis Y, Ronfort J, Burgarella C, Chantret N, Prosperi JM, Briskine R, Mudge J, Debéllé F, Navier H, Miteul H, Hajri A, Baranger A, Tiffin P, Dumas B, Pilet-Nayel ML, Young ND, Jacquet C.

New Phytol. 2014 Mar;201(4):1328-42. doi: 10.1111/nph.12611. Epub 2013 Nov 28.

13.

Two alternative recessive quantitative trait loci influence resistance to spring black stem and leaf spot in Medicago truncatula.

Kamphuis LG, Lichtenzveig J, Oliver RP, Ellwood SR.

BMC Plant Biol. 2008 Mar 26;8:30. doi: 10.1186/1471-2229-8-30.

14.

Genome-wide analysis of the gene families of resistance gene analogues in cotton and their response to Verticillium wilt.

Chen JY, Huang JQ, Li NY, Ma XF, Wang JL, Liu C, Liu YF, Liang Y, Bao YM, Dai XF.

BMC Plant Biol. 2015 Jun 19;15:148. doi: 10.1186/s12870-015-0508-3.

15.

NFP, a LysM protein controlling Nod factor perception, also intervenes in Medicago truncatula resistance to pathogens.

Rey T, Nars A, Bonhomme M, Bottin A, Huguet S, Balzergue S, Jardinaud MF, Bono JJ, Cullimore J, Dumas B, Gough C, Jacquet C.

New Phytol. 2013 May;198(3):875-86. doi: 10.1111/nph.12198. Epub 2013 Feb 25.

16.

ERECTA, salicylic acid, abscisic acid, and jasmonic acid modulate quantitative disease resistance of Arabidopsis thaliana to Verticillium longisporum.

Häffner E, Karlovsky P, Splivallo R, Traczewska A, Diederichsen E.

BMC Plant Biol. 2014 Apr 1;14:85. doi: 10.1186/1471-2229-14-85.

17.

Failure of self-control: defense-like reactions during legume/rhizobia symbiosis.

Bourcy M, Berrabah F, Ratet P, Gourion B.

Plant Signal Behav. 2013 Apr;8(4):e23915. doi: 10.4161/psb.23915. Epub 2013 Feb 20.

PMID:
23425859
18.

Characterization and genetic dissection of resistance to spotted alfalfa aphid (Therioaphis trifolii) in Medicago truncatula.

Kamphuis LG, Lichtenzveig J, Peng K, Guo SM, Klingler JP, Siddique KH, Gao LL, Singh KB.

J Exp Bot. 2013 Nov;64(16):5157-72. doi: 10.1093/jxb/ert305. Epub 2013 Sep 21.

19.

AER1, a major gene conferring resistance to Aphanomyces euteiches in Medicago truncatula.

Pilet-Nayel ML, Prospéri JM, Hamon C, Lesné A, Lecointe R, Le Goff I, Hervé M, Deniot G, Delalande M, Huguet T, Jacquet C, Baranger A.

Phytopathology. 2009 Feb;99(2):203-8. doi: 10.1094/PHYTO-99-2-0203.

20.

Mapping genes for resistance to Verticillium albo-atrum in tetraploid and diploid potato populations using haplotype association tests and genetic linkage analysis.

Simko I, Haynes KG, Ewing EE, Costanzo S, Christ BJ, Jones RW.

Mol Genet Genomics. 2004 Jun;271(5):522-31. Epub 2004 Apr 24.

PMID:
15107986

Supplemental Content

Support Center