Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 156

1.

Molecular, physiological, and motor performance defects in DMSXL mice carrying >1,000 CTG repeats from the human DM1 locus.

Huguet A, Medja F, Nicole A, Vignaud A, Guiraud-Dogan C, Ferry A, Decostre V, Hogrel JY, Metzger F, Hoeflich A, Baraibar M, Gomes-Pereira M, Puymirat J, Bassez G, Furling D, Munnich A, Gourdon G.

PLoS Genet. 2012;8(11):e1003043. doi: 10.1371/journal.pgen.1003043. Epub 2012 Nov 29.

2.

Sense and Antisense DMPK RNA Foci Accumulate in DM1 Tissues during Development.

Michel L, Huguet-Lachon A, Gourdon G.

PLoS One. 2015 Sep 4;10(9):e0137620. doi: 10.1371/journal.pone.0137620. eCollection 2015.

3.

The CTG repeat expansion size correlates with the splicing defects observed in muscles from myotonic dystrophy type 1 patients.

Botta A, Rinaldi F, Catalli C, Vergani L, Bonifazi E, Romeo V, Loro E, Viola A, Angelini C, Novelli G.

J Med Genet. 2008 Oct;45(10):639-46. doi: 10.1136/jmg.2008.058909. Epub 2008 Jul 8.

PMID:
18611984
4.

DM1 CTG expansions affect insulin receptor isoforms expression in various tissues of transgenic mice.

Guiraud-Dogan C, Huguet A, Gomes-Pereira M, Brisson E, Bassez G, Junien C, Gourdon G.

Biochim Biophys Acta. 2007 Dec;1772(11-12):1183-91. Epub 2007 Sep 15.

5.

Cytoplasmic CUG RNA foci are insufficient to elicit key DM1 features.

Dansithong W, Wolf CM, Sarkar P, Paul S, Chiang A, Holt I, Morris GE, Branco D, Sherwood MC, Comai L, Berul CI, Reddy S.

PLoS One. 2008;3(12):e3968. doi: 10.1371/journal.pone.0003968. Epub 2008 Dec 18.

6.

Progressive skeletal muscle weakness in transgenic mice expressing CTG expansions is associated with the activation of the ubiquitin-proteasome pathway.

Vignaud A, Ferry A, Huguet A, Baraibar M, Trollet C, Hyzewicz J, Butler-Browne G, Puymirat J, Gourdon G, Furling D.

Neuromuscul Disord. 2010 May;20(5):319-25. doi: 10.1016/j.nmd.2010.03.006. Epub 2010 Mar 25.

PMID:
20346670
7.

Hammerhead ribozyme-mediated destruction of nuclear foci in myotonic dystrophy myoblasts.

Langlois MA, Lee NS, Rossi JJ, Puymirat J.

Mol Ther. 2003 May;7(5 Pt 1):670-80.

8.

Respiratory failure in a mouse model of myotonic dystrophy does not correlate with the CTG repeat length.

Panaite PA, Kuntzer T, Gourdon G, Barakat-Walter I.

Respir Physiol Neurobiol. 2013 Oct 1;189(1):22-6. doi: 10.1016/j.resp.2013.06.014. Epub 2013 Jun 27.

PMID:
23811192
9.

A low absolute number of expanded transcripts is involved in myotonic dystrophy type 1 manifestation in muscle.

Gudde AE, González-Barriga A, van den Broek WJ, Wieringa B, Wansink DG.

Hum Mol Genet. 2016 Apr 15;25(8):1648-62. doi: 10.1093/hmg/ddw042. Epub 2016 Feb 16.

10.

Mice transgenic for the human myotonic dystrophy region with expanded CTG repeats display muscular and brain abnormalities.

Seznec H, Agbulut O, Sergeant N, Savouret C, Ghestem A, Tabti N, Willer JC, Ourth L, Duros C, Brisson E, Fouquet C, Butler-Browne G, Delacourte A, Junien C, Gourdon G.

Hum Mol Genet. 2001 Nov 1;10(23):2717-26.

PMID:
11726559
11.

Systemic delivery of a Peptide-linked morpholino oligonucleotide neutralizes mutant RNA toxicity in a mouse model of myotonic dystrophy.

Leger AJ, Mosquea LM, Clayton NP, Wu IH, Weeden T, Nelson CA, Phillips L, Roberts E, Piepenhagen PA, Cheng SH, Wentworth BM.

Nucleic Acid Ther. 2013 Apr;23(2):109-17. doi: 10.1089/nat.2012.0404. Epub 2013 Jan 11.

PMID:
23308382
12.

Stabilization of expanded (CTG)•(CAG) repeats by antisense oligonucleotides.

Nakamori M, Gourdon G, Thornton CA.

Mol Ther. 2011 Dec;19(12):2222-7. doi: 10.1038/mt.2011.191. Epub 2011 Oct 4.

13.

Peripheral neuropathy is linked to a severe form of myotonic dystrophy in transgenic mice.

Panaite PA, Kielar M, Kraftsik R, Gourdon G, Kuntzer T, Barakat-Walter I.

J Neuropathol Exp Neurol. 2011 Aug;70(8):678-85. doi: 10.1097/NEN.0b013e3182260939.

PMID:
21760538
14.

Expanded CTG repeat demarcates a boundary for abnormal CpG methylation in myotonic dystrophy patient tissues.

López Castel A, Nakamori M, Tomé S, Chitayat D, Gourdon G, Thornton CA, Pearson CE.

Hum Mol Genet. 2011 Jan 1;20(1):1-15. doi: 10.1093/hmg/ddq427. Epub 2010 Nov 1.

15.

Decreased expression of DMPK: correlation with CTG repeat expansion and fibre type composition in myotonic dystrophy type 1.

Salvatori S, Fanin M, Trevisan CP, Furlan S, Reddy S, Nagy JI, Angelini C.

Neurol Sci. 2005 Oct;26(4):235-42.

PMID:
16193250
16.

Mass spectrometry analysis of complexes formed by myotonic dystrophy protein kinase (DMPK).

Forner F, Furlan S, Salvatori S.

Biochim Biophys Acta. 2010 Jun;1804(6):1334-41. doi: 10.1016/j.bbapap.2010.02.011. Epub 2010 Feb 25.

PMID:
20188867
17.

Elevation of RNA-binding protein CUGBP1 is an early event in an inducible heart-specific mouse model of myotonic dystrophy.

Wang GS, Kearney DL, De Biasi M, Taffet G, Cooper TA.

J Clin Invest. 2007 Oct;117(10):2802-11.

18.

Changes in myotonic dystrophy protein kinase levels and muscle development in congenital myotonic dystrophy.

Furling D, Lam le T, Agbulut O, Butler-Browne GS, Morris GE.

Am J Pathol. 2003 Mar;162(3):1001-9.

19.

Reversible model of RNA toxicity and cardiac conduction defects in myotonic dystrophy.

Mahadevan MS, Yadava RS, Yu Q, Balijepalli S, Frenzel-McCardell CD, Bourne TD, Phillips LH.

Nat Genet. 2006 Sep;38(9):1066-70. Epub 2006 Jul 30.

20.

Short antisense-locked nucleic acids (all-LNAs) correct alternative splicing abnormalities in myotonic dystrophy.

Wojtkowiak-Szlachcic A, Taylor K, Stepniak-Konieczna E, Sznajder LJ, Mykowska A, Sroka J, Thornton CA, Sobczak K.

Nucleic Acids Res. 2015 Mar 31;43(6):3318-31. doi: 10.1093/nar/gkv163. Epub 2015 Mar 9.

Supplemental Content

Support Center