Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 113

1.

The preparation of PLLA/calcium phosphate hybrid composite and its evaluation of biocompatibility.

Hamada Y, Fujitani W, Kawaguchi N, Daito K, Niido T, Uchinaka A, Mori S, Kojima Y, Manabe M, Nishida K, Arita K, Nakano T, Matsuura N.

Dent Mater J. 2012;31(6):1087-96.

3.

Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering.

Lou T, Wang X, Song G, Gu Z, Yang Z.

Int J Biol Macromol. 2014 Aug;69:464-70. doi: 10.1016/j.ijbiomac.2014.06.004.

PMID:
24933519
4.

[Research of osteoblast-induced rat mesenchymal stem cells cocultured with beta-TCP/PLLA composite of different ratio].

Wu Q, Tang Y, Chen H, Wu J, Yin G.

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2005 Apr;22(2):242-6. Chinese.

PMID:
15884527
5.
6.

[Manufacture and study of porous poly(l-lactic acid) (PLLA)/beta-tricalcium phosphate (beta-TCP) composite].

Chen R, Chen H, Han J, Zhou D, Zheng C.

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2001 Jun;18(2):177-80. Chinese.

PMID:
11450528
7.

Development and cell response of a new biodegradable composite scaffold for guided bone regeneration.

Navarro M, Ginebra MP, Planell JA, Zeppetelli S, Ambrosio L.

J Mater Sci Mater Med. 2004 Apr;15(4):419-22.

PMID:
15332610
9.

Fabrication and characterization of nano composite scaffold of poly(L-lactic acid)/hydroxyapatite.

Wang X, Song G, Lou T.

J Mater Sci Mater Med. 2010 Jan;21(1):183-8. doi: 10.1007/s10856-009-3855-5.

PMID:
19705258
10.

Biomimetic scaffolds based on hydroxyapatite nanorod/poly(D,L) lactic acid with their corresponding apatite-forming capability and biocompatibility for bone-tissue engineering.

Nga NK, Hoai TT, Viet PH.

Colloids Surf B Biointerfaces. 2015 Apr 1;128:506-14. doi: 10.1016/j.colsurfb.2015.03.001.

PMID:
25791418
11.

Poly(L-lactic acid) nanocylinders as nanofibrous structures for macroporous gelatin scaffolds.

Lee JB, Jeong SI, Bae MS, Heo DN, Heo JS, Hwang YS, Lee HW, Kwon IK.

J Nanosci Nanotechnol. 2011 Jul;11(7):6371-6.

PMID:
22121718
12.

Biocompatibility and bone-repairing effects: comparison between porous poly-lactic-co-glycolic acid and nano-hydroxyapatite/poly(lactic acid) scaffolds.

Zong C, Qian X, Tang Z, Hu Q, Chen J, Gao C, Tang R, Tong X, Wang J.

J Biomed Nanotechnol. 2014 Jun;10(6):1091-104.

PMID:
24749403
13.

Novel porous scaffolds of poly(lactic acid) produced by phase-separation using room temperature ionic liquid and the assessments of biocompatibility.

Lee HY, Jin GZ, Shin US, Kim JH, Kim HW.

J Mater Sci Mater Med. 2012 May;23(5):1271-9. doi: 10.1007/s10856-012-4588-4.

PMID:
22382734
14.

Structure and properties of PLLA/β-TCP nanocomposite scaffolds for bone tissue engineering.

Lou T, Wang X, Song G, Gu Z, Yang Z.

J Mater Sci Mater Med. 2015 Jan;26(1):5366. doi: 10.1007/s10856-014-5366-2.

PMID:
25578714
15.

Enhancing osteoconduction of PLLA-based nanocomposite scaffolds for bone regeneration using different biomimetic signals to MSCs.

Ciapetti G, Granchi D, Devescovi V, Baglio SR, Leonardi E, Martini D, Jurado MJ, Olalde B, Armentano I, Kenny JM, Walboomers FX, Alava JI, Baldini N.

Int J Mol Sci. 2012;13(2):2439-58. doi: 10.3390/ijms13022439.

16.

In vitro and in vivo evaluation of porous PCL-PLLA 3D polymer scaffolds fabricated via salt leaching method for bone tissue engineering applications.

Sadiasa A, Nguyen TH, Lee BT.

J Biomater Sci Polym Ed. 2014;25(2):150-67. doi: 10.1080/09205063.2013.846633.

PMID:
24138179
17.

Electrospun nanofibrous scaffolds of poly (L-lactic acid)-dicalcium silicate composite via ultrasonic-aging technique for bone regeneration.

Dong S, Sun J, Li Y, Li J, Cui W, Li B.

Mater Sci Eng C Mater Biol Appl. 2014 Feb 1;35:426-33. doi: 10.1016/j.msec.2013.11.027.

PMID:
24411397
18.

Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies.

Lu HH, Cooper JA Jr, Manuel S, Freeman JW, Attawia MA, Ko FK, Laurencin CT.

Biomaterials. 2005 Aug;26(23):4805-16.

PMID:
15763260
19.

Functionalized carbon nanotube reinforced scaffolds for bone regenerative engineering: fabrication, in vitro and in vivo evaluation.

Mikael PE, Amini AR, Basu J, Josefina Arellano-Jimenez M, Laurencin CT, Sanders MM, Barry Carter C, Nukavarapu SP.

Biomed Mater. 2014 Jun;9(3):035001. doi: 10.1088/1748-6041/9/3/035001.

PMID:
24687391
20.

Growth on poly(L-lactic acid) porous scaffold preserves CD73 and CD90 immunophenotype markers of rat bone marrow mesenchymal stromal cells.

Zamparelli A, Zini N, Cattini L, Spaletta G, Dallatana D, Bassi E, Barbaro F, Iafisco M, Mosca S, Parrilli A, Fini M, Giardino R, Sandri M, Sprio S, Tampieri A, Maraldi NM, Toni R.

J Mater Sci Mater Med. 2014 Oct;25(10):2421-36. doi: 10.1007/s10856-014-5259-4.

PMID:
24997163
Items per page

Supplemental Content

Support Center