Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 92

1.

Characterizing the memory of the GAL regulatory network in Saccharomyces cerevisiae.

Kulkarni VV, Kareenhalli V, Viswananthan GA, Riedel M.

Syst Synth Biol. 2011 Dec;5(3-4):97-104. doi: 10.1007/s11693-011-9086-3. Epub 2011 Sep 20.

2.

Growth-related model of the GAL system in Saccharomyces cerevisiae predicts behaviour of several mutant strains.

Pannala VR, Hazarika SJ, Bhat PJ, Bhartiya S, Venkatesh KV.

IET Syst Biol. 2012 Apr;6(2):44-53. doi: 10.1049/iet-syb.2010.0060.

PMID:
22519357
3.

Stability analysis of the GAL regulatory network in Saccharomyces cerevisiae and Kluyveromyces lactis.

Kulkarni VV, Kareenhalli V, Malakar P, Pao LY, Safonov MG, Viswanathan GA.

BMC Bioinformatics. 2010 Jan 18;11 Suppl 1:S43. doi: 10.1186/1471-2105-11-S1-S43.

4.

Experimental and steady-state analysis of the GAL regulatory system in Kluyveromyces lactis.

Pannala VR, Bhartiya S, Venkatesh KV.

FEBS J. 2010 Jul;277(14):2987-3002. doi: 10.1111/j.1742-4658.2010.07708.x. Epub 2010 Jun 7.

5.

Structural bistability of the GAL regulatory network and characterization of its domains of attraction.

Cosentino C, Salerno L, Passanti A, Merola A, Bates DG, Amato F.

J Comput Biol. 2012 Feb;19(2):148-62. doi: 10.1089/cmb.2011.0251.

PMID:
22300317
6.

Mathematical model of GAL regulon dynamics in Saccharomyces cerevisiae.

Apostu R, Mackey MC.

J Theor Biol. 2012 Jan 21;293:219-35. doi: 10.1016/j.jtbi.2011.10.012. Epub 2011 Oct 19.

PMID:
22024631
7.

Localization and interaction of the proteins constituting the GAL genetic switch in Saccharomyces cerevisiae.

Wightman R, Bell R, Reece RJ.

Eukaryot Cell. 2008 Dec;7(12):2061-8. doi: 10.1128/EC.00261-08. Epub 2008 Oct 24.

8.

Multiple Conformations of Gal3 Protein Drive the Galactose-Induced Allosteric Activation of the GAL Genetic Switch of Saccharomyces cerevisiae.

Kar RK, Kharerin H, Padinhateeri R, Bhat PJ.

J Mol Biol. 2017 Jan 6;429(1):158-176. doi: 10.1016/j.jmb.2016.11.005. Epub 2016 Nov 29.

PMID:
27913116
9.

Dynamic analysis of the KlGAL regulatory system in Kluyveromyces lactis: a comparative study with Saccharomyces cerevisiae.

Pannala VR, Ahammed Sherief KY, Bhartiya S, Venkatesh KV.

Syst Synth Biol. 2011 Jun;5(1-2):69-85. doi: 10.1007/s11693-011-9082-7. Epub 2011 Jun 3.

11.

GAL regulon of Saccharomyces cerevisiae performs optimally to maximize growth on galactose.

Malakar P, Venkatesh KV.

FEMS Yeast Res. 2014 Mar;14(2):346-56. doi: 10.1111/1567-1364.12109. Epub 2013 Nov 8.

12.

Analysis of the galactose signal transduction pathway in Saccharomyces cerevisiae: interaction between Gal3p and Gal80p.

Suzuki-Fujimoto T, Fukuma M, Yano KI, Sakurai H, Vonika A, Johnston SA, Fukasawa T.

Mol Cell Biol. 1996 May;16(5):2504-8.

13.

Molecular structure of Saccharomyces cerevisiae Gal1p, a bifunctional galactokinase and transcriptional inducer.

Thoden JB, Sellick CA, Timson DJ, Reece RJ, Holden HM.

J Biol Chem. 2005 Nov 4;280(44):36905-11. Epub 2005 Aug 22.

15.
16.

Validation of a model of the GAL regulatory system via robustness analysis of its bistability characteristics.

Salerno L, Cosentino C, Merola A, Bates DG, Amato F.

BMC Syst Biol. 2013 May 17;7:39. doi: 10.1186/1752-0509-7-39.

17.

Interplay of a ligand sensor and an enzyme in controlling expression of the Saccharomyces cerevisiae GAL genes.

Abramczyk D, Holden S, Page CJ, Reece RJ.

Eukaryot Cell. 2012 Mar;11(3):334-42. doi: 10.1128/EC.05294-11. Epub 2011 Dec 30.

19.

The Gal3p-Gal80p-Gal4p transcription switch of yeast: Gal3p destabilizes the Gal80p-Gal4p complex in response to galactose and ATP.

Sil AK, Alam S, Xin P, Ma L, Morgan M, Lebo CM, Woods MP, Hopper JE.

Mol Cell Biol. 1999 Nov;19(11):7828-40.

20.

Supplemental Content

Support Center