Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 83

1.

Evolution of GluN2A/B cytoplasmic domains diversified vertebrate synaptic plasticity and behavior.

Ryan TJ, Kopanitsa MV, Indersmitten T, Nithianantharajah J, Afinowi NO, Pettit C, Stanford LE, Sprengel R, Saksida LM, Bussey TJ, O'Dell TJ, Grant SG, Komiyama NH.

Nat Neurosci. 2013 Jan;16(1):25-32. doi: 10.1038/nn.3277. Epub 2012 Dec 2. Erratum in: Nat Neurosci. 2013 Dec;16(12):1908.

2.

Regulation of NMDA receptor transport: a KIF17-cargo binding/releasing underlies synaptic plasticity and memory in vivo.

Yin X, Feng X, Takei Y, Hirokawa N.

J Neurosci. 2012 Apr 18;32(16):5486-99. doi: 10.1523/JNEUROSCI.0718-12.2012.

3.

Synaptic NMDA receptors in basolateral amygdala principal neurons are triheteromeric proteins: physiological role of GluN2B subunits.

Delaney AJ, Sedlak PL, Autuori E, Power JM, Sah P.

J Neurophysiol. 2013 Mar;109(5):1391-402. doi: 10.1152/jn.00176.2012. Epub 2012 Dec 5.

4.

NMDA receptor 2 (NR2) C-terminal control of NR open probability regulates synaptic transmission and plasticity at a cerebellar synapse.

Rossi P, Sola E, Taglietti V, Borchardt T, Steigerwald F, Utvik JK, Ottersen OP, Köhr G, D'Angelo E.

J Neurosci. 2002 Nov 15;22(22):9687-97.

5.

Setdb1 histone methyltransferase regulates mood-related behaviors and expression of the NMDA receptor subunit NR2B.

Jiang Y, Jakovcevski M, Bharadwaj R, Connor C, Schroeder FA, Lin CL, Straubhaar J, Martin G, Akbarian S.

J Neurosci. 2010 May 26;30(21):7152-67. doi: 10.1523/JNEUROSCI.1314-10.2010.

6.

NMDA receptor GluN2B (GluR epsilon 2/NR2B) subunit is crucial for channel function, postsynaptic macromolecular organization, and actin cytoskeleton at hippocampal CA3 synapses.

Akashi K, Kakizaki T, Kamiya H, Fukaya M, Yamasaki M, Abe M, Natsume R, Watanabe M, Sakimura K.

J Neurosci. 2009 Sep 2;29(35):10869-82. doi: 10.1523/JNEUROSCI.5531-08.2009.

7.
8.

The subtype of GluN2 C-terminal domain determines the response to excitotoxic insults.

Martel MA, Ryan TJ, Bell KF, Fowler JH, McMahon A, Al-Mubarak B, Komiyama NH, Horsburgh K, Kind PC, Grant SG, Wyllie DJ, Hardingham GE.

Neuron. 2012 May 10;74(3):543-56. doi: 10.1016/j.neuron.2012.03.021.

9.

Molecular determinants controlling NMDA receptor synaptic incorporation.

Storey GP, Opitz-Araya X, Barria A.

J Neurosci. 2011 Apr 27;31(17):6311-6. doi: 10.1523/JNEUROSCI.5553-10.2011.

10.

Distinct modes of AMPA receptor suppression at developing synapses by GluN2A and GluN2B: single-cell NMDA receptor subunit deletion in vivo.

Gray JA, Shi Y, Usui H, During MJ, Sakimura K, Nicoll RA.

Neuron. 2011 Sep 22;71(6):1085-101. doi: 10.1016/j.neuron.2011.08.007. Epub 2011 Sep 21.

11.

Metaplasticity at single glutamatergic synapses.

Lee MC, Yasuda R, Ehlers MD.

Neuron. 2010 Jun 24;66(6):859-70. doi: 10.1016/j.neuron.2010.05.015.

12.

Evolution of NMDA receptor cytoplasmic interaction domains: implications for organisation of synaptic signalling complexes.

Ryan TJ, Emes RD, Grant SG, Komiyama NH.

BMC Neurosci. 2008 Jan 15;9:6. doi: 10.1186/1471-2202-9-6.

13.

The glutamate receptor GluN2 subunit regulates synaptic trafficking of AMPA receptors in the neonatal mouse brain.

Hamada S, Ogawa I, Yamasaki M, Kiyama Y, Kassai H, Watabe AM, Nakao K, Aiba A, Watanabe M, Manabe T.

Eur J Neurosci. 2014 Oct;40(8):3136-46. doi: 10.1111/ejn.12682. Epub 2014 Aug 8.

PMID:
25131300
14.

Downregulation of NR3A-containing NMDARs is required for synapse maturation and memory consolidation.

Roberts AC, Díez-García J, Rodriguiz RM, López IP, Luján R, Martínez-Turrillas R, Picó E, Henson MA, Bernardo DR, Jarrett TM, Clendeninn DJ, López-Mascaraque L, Feng G, Lo DC, Wesseling JF, Wetsel WC, Philpot BD, Pérez-Otaño I.

Neuron. 2009 Aug 13;63(3):342-56. doi: 10.1016/j.neuron.2009.06.016.

15.

A single GluN2 subunit residue controls NMDA receptor channel properties via intersubunit interaction.

Siegler Retchless B, Gao W, Johnson JW.

Nat Neurosci. 2012 Jan 15;15(3):406-13, S1-2. doi: 10.1038/nn.3025.

16.

Disrupted surface cross-talk between NMDA and Ephrin-B2 receptors in anti-NMDA encephalitis.

Mikasova L, De Rossi P, Bouchet D, Georges F, Rogemond V, Didelot A, Meissirel C, Honnorat J, Groc L.

Brain. 2012 May;135(Pt 5):1606-21. doi: 10.1093/brain/aws092.

PMID:
22544902
17.

MPX-004 and MPX-007: New Pharmacological Tools to Study the Physiology of NMDA Receptors Containing the GluN2A Subunit.

Volkmann RA, Fanger CM, Anderson DR, Sirivolu VR, Paschetto K, Gordon E, Virginio C, Gleyzes M, Buisson B, Steidl E, Mierau SB, Fagiolini M, Menniti FS.

PLoS One. 2016 Feb 1;11(2):e0148129. doi: 10.1371/journal.pone.0148129. eCollection 2016 Feb 1. Erratum in: PLoS One. 2016;11(3):e0151452.

18.

Tyrosine phosphorylation regulates the endocytosis and surface expression of GluN3A-containing NMDA receptors.

Chowdhury D, Marco S, Brooks IM, Zandueta A, Rao Y, Haucke V, Wesseling JF, Tavalin SJ, Pérez-Otaño I.

J Neurosci. 2013 Feb 27;33(9):4151-64. doi: 10.1523/JNEUROSCI.2721-12.2013.

19.

Potentiation of convergent synaptic inputs onto pyramidal neurons in somatosensory cortex: dependence on brain wave frequencies and NMDA receptor subunit composition.

Pilli J, Kumar SS.

Neuroscience. 2014 Jul 11;272:271-85. doi: 10.1016/j.neuroscience.2014.04.062. Epub 2014 May 9.

PMID:
24814019
20.

Differential stimulus-dependent synaptic recruitment of CaMKIIα by intracellular determinants of GluN2B.

She K, Rose JK, Craig AM.

Mol Cell Neurosci. 2012 Nov;51(3-4):68-78. doi: 10.1016/j.mcn.2012.08.001. Epub 2012 Aug 10.

PMID:
22902837

Supplemental Content

Support Center