Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 112

1.

Fourier-Bessel analysis of localized states and photonic bandgaps in 12-fold photonic quasi-crystals.

Newman SR, Gauthier RC.

J Opt Soc Am A Opt Image Sci Vis. 2012 Nov 1;29(11):2344-9. doi: 10.1364/JOSAA.29.002344.

PMID:
23201795
3.
4.

Photonic bandgaps of different unit cells in the basic structural unit of germanium-based two-dimensional decagonal photonic quasi-crystals.

Liu J, Fan Z, Xiao H, Zhang W, Guan C, Yuan L.

Appl Opt. 2011 Aug 20;50(24):4868-72. doi: 10.1364/AO.50.004868.

PMID:
21857712
5.

Photonic band gaps in a two-dimensional hybrid triangular-graphite lattice.

Martínez L, García-Martín A, Postigo P.

Opt Express. 2004 Nov 15;12(23):5684-9.

PMID:
19488203
6.

Complete photonic bandgaps in 12-fold symmetric quasicrystals

Zoorob ME, Charlton MD, Parker GJ, Baumberg JJ, Netti MC.

Nature. 2000 Apr 13;404(6779):740-3.

PMID:
10783882
7.

Self-collimating photonic crystal antireflection structure for both TE and TM polarizations.

Park JM, Lee SG, Park HR, Lee MH.

Opt Express. 2010 Jun 7;18(12):13083-93. doi: 10.1364/OE.18.013083.

PMID:
20588438
8.
9.

Symmetry constraints and the existence of Bloch mode vortices in linear photonic crystals.

Wheeldon JF, Hall T, Schriemer H.

Opt Express. 2007 Mar 19;15(6):3531-42.

PMID:
19532596
10.

Complex 2D photonic crystals with analogue local symmetry as 12-fold quasicrystals.

Cheng SC, Zhu X, Yang S.

Opt Express. 2009 Sep 14;17(19):16710-5. doi: 10.1364/OE.17.016710.

PMID:
19770885
11.

Photonic band gap analysis using finite-difference frequency-domain method.

Guo S, Wu F, Albin S, Rogowski R.

Opt Express. 2004 Apr 19;12(8):1741-6.

PMID:
19475000
12.

Spherical space Bessel-Legendre-Fourier localized modes solver for electromagnetic waves.

Alzahrani MA, Gauthier RC.

Opt Express. 2015 Oct 5;23(20):25717-37. doi: 10.1364/OE.23.025717.

PMID:
26480087
13.

Two-dimensional photonic crystals with large complete photonic band gaps in both TE and TM polarizations.

Wen F, David S, Checoury X, El Kurdi M, Boucaud P.

Opt Express. 2008 Aug 4;16(16):12278-89.

PMID:
18679505
14.

Photonic quasi-crystal terahertz lasers.

Vitiello MS, Nobile M, Ronzani A, Tredicucci A, Castellano F, Talora V, Li L, Linfield EH, Davies AG.

Nat Commun. 2014 Dec 19;5:5884. doi: 10.1038/ncomms6884.

15.

Symmetry properties of two-dimensional anisotropic photonic crystals.

Alagappan G, Sun XW, Shum P, Yu MB, den Engelsen D.

J Opt Soc Am A Opt Image Sci Vis. 2006 Aug;23(8):2002-13.

PMID:
16835660
16.

Polarization-independent self-collimation based on pill-void photonic crystals with square symmetry.

Xu Y, Chen XJ, Lan S, Dai QF, Guo Q, Wu LJ.

Opt Express. 2009 Mar 16;17(6):4903-12.

PMID:
19293922
17.

Opening up complete photonic bandgaps in three-dimensional photonic crystals consisting of biaxial dielectric spheres.

Liu S, Lin Z.

Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jun;73(6 Pt 2):066609. Epub 2006 Jun 8.

PMID:
16906999
18.

The effect of interfacial roughness on the normal incidence bandgap of one-dimensional photonic crystals.

Maskaly K, Carter W, Averitt R, Maxwell J.

Opt Express. 2005 Oct 17;13(21):8380-9.

PMID:
19498868
19.

Three-dimensional control of light in a two-dimensional photonic crystal slab.

Chow E, Lin SY, Johnson SG, Villeneuve PR, Joannopoulos JD, Wendt JR, Vawter GA, Zubrzycki W, Hou H, Alleman A.

Nature. 2000 Oct 26;407(6807):983-6.

PMID:
11069173
20.

Role of photonic bandgaps in polarization-independent grating waveguide structures.

Grinvald E, Katchalski T, Soria S, Levit S, Friesem AA.

J Opt Soc Am A Opt Image Sci Vis. 2008 Jun;25(6):1435-43.

PMID:
18516155

Supplemental Content

Support Center