Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 111

1.

Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs.

Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, Arias MC, Ball SG, Gile GH, Hirakawa Y, Hopkins JF, Kuo A, Rensing SA, Schmutz J, Symeonidi A, Elias M, Eveleigh RJ, Herman EK, Klute MJ, Nakayama T, Oborník M, Reyes-Prieto A, Armbrust EV, Aves SJ, Beiko RG, Coutinho P, Dacks JB, Durnford DG, Fast NM, Green BR, Grisdale CJ, Hempel F, Henrissat B, Höppner MP, Ishida K, Kim E, Kořený L, Kroth PG, Liu Y, Malik SB, Maier UG, McRose D, Mock T, Neilson JA, Onodera NT, Poole AM, Pritham EJ, Richards TA, Rocap G, Roy SW, Sarai C, Schaack S, Shirato S, Slamovits CH, Spencer DF, Suzuki S, Worden AZ, Zauner S, Barry K, Bell C, Bharti AK, Crow JA, Grimwood J, Kramer R, Lindquist E, Lucas S, Salamov A, McFadden GI, Lane CE, Keeling PJ, Gray MW, Grigoriev IV, Archibald JM.

Nature. 2012 Dec 6;492(7427):59-65. doi: 10.1038/nature11681. Epub 2012 Nov 28.

PMID:
23201678
2.

Nucleomorph and plastid genome sequences of the chlorarachniophyte Lotharella oceanica: convergent reductive evolution and frequent recombination in nucleomorph-bearing algae.

Tanifuji G, Onodera NT, Brown MW, Curtis BA, Roger AJ, Ka-Shu Wong G, Melkonian M, Archibald JM.

BMC Genomics. 2014 May 15;15:374. doi: 10.1186/1471-2164-15-374.

3.

Nucleomorph Genome Sequences of Two Chlorarachniophytes, Amorphochlora amoebiformis and Lotharella vacuolata.

Suzuki S, Shirato S, Hirakawa Y, Ishida K.

Genome Biol Evol. 2015 May 22;7(6):1533-45. doi: 10.1093/gbe/evv096.

4.

Polyploidy of endosymbiotically derived genomes in complex algae.

Hirakawa Y, Ishida K.

Genome Biol Evol. 2014 Apr;6(4):974-80. doi: 10.1093/gbe/evu071.

5.

Comparative rates of evolution in endosymbiotic nuclear genomes.

Patron NJ, Rogers MB, Keeling PJ.

BMC Evol Biol. 2006 Jun 14;6:46.

6.

Proteomics reveals plastid- and periplastid-targeted proteins in the chlorarachniophyte alga Bigelowiella natans.

Hopkins JF, Spencer DF, Laboissiere S, Neilson JA, Eveleigh RJ, Durnford DG, Gray MW, Archibald JM.

Genome Biol Evol. 2012;4(12):1391-406. doi: 10.1093/gbe/evs115.

7.

Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function.

Lane CE, van den Heuvel K, Kozera C, Curtis BA, Parsons BJ, Bowman S, Archibald JM.

Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19908-13. Epub 2007 Dec 6.

8.

Overexpression of molecular chaperone genes in nucleomorph genomes.

Hirakawa Y, Suzuki S, Archibald JM, Keeling PJ, Ishida K.

Mol Biol Evol. 2014 Jun;31(6):1437-43. doi: 10.1093/molbev/msu092. Epub 2014 Mar 6.

PMID:
24603278
9.

Endosymbiotic evolution: the totalitarian nucleus is foiled again.

Timmis JN, Wang D.

Curr Biol. 2013 Jan 7;23(1):R30-2. doi: 10.1016/j.cub.2012.11.038.

10.

Complete nucleomorph genome sequence of the nonphotosynthetic alga Cryptomonas paramecium reveals a core nucleomorph gene set.

Tanifuji G, Onodera NT, Wheeler TJ, Dlutek M, Donaher N, Archibald JM.

Genome Biol Evol. 2011;3:44-54. doi: 10.1093/gbe/evq082. Epub 2010 Dec 8.

11.

Complete sequence and analysis of the mitochondrial genome of Hemiselmis andersenii CCMP644 (Cryptophyceae).

Kim E, Lane CE, Curtis BA, Kozera C, Bowman S, Archibald JM.

BMC Genomics. 2008 May 12;9:215. doi: 10.1186/1471-2164-9-215.

12.

Nucleus-encoded periplastid-targeted EFL in chlorarachniophytes.

Gile GH, Keeling PJ.

Mol Biol Evol. 2008 Sep;25(9):1967-77. doi: 10.1093/molbev/msn147. Epub 2008 Jul 3.

PMID:
18599495
13.

Comparative genomics of mitochondria in chlorarachniophyte algae: endosymbiotic gene transfer and organellar genome dynamics.

Tanifuji G, Archibald JM, Hashimoto T.

Sci Rep. 2016 Feb 18;6:21016. doi: 10.1038/srep21016.

14.

Going, going, not quite gone: nucleomorphs as a case study in nuclear genome reduction.

Archibald JM, Lane CE.

J Hered. 2009 Sep-Oct;100(5):582-90. doi: 10.1093/jhered/esp055. Epub 2009 Jul 17. Review.

PMID:
19617523
15.

Evolution of ultrasmall spliceosomal introns in highly reduced nuclear genomes.

Slamovits CH, Keeling PJ.

Mol Biol Evol. 2009 Aug;26(8):1699-705. doi: 10.1093/molbev/msp081. Epub 2009 Apr 20.

PMID:
19380463
16.

Nucleomorph genomes.

Moore CE, Archibald JM.

Annu Rev Genet. 2009;43:251-64. doi: 10.1146/annurev-genet-102108-134809. Review.

PMID:
19686079
17.

Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: lateral transfer of putative DNA replication machinery and a test of chromist plastid phylogeny.

Khan H, Parks N, Kozera C, Curtis BA, Parsons BJ, Bowman S, Archibald JM.

Mol Biol Evol. 2007 Aug;24(8):1832-42. Epub 2007 May 23.

PMID:
17522086
18.

Nucleomorph genomes: structure, function, origin and evolution.

Archibald JM.

Bioessays. 2007 Apr;29(4):392-402.

PMID:
17373660
19.

Reduced nuclear genomes maintain high gene transcription levels.

Tanifuji G, Onodera NT, Moore CE, Archibald JM.

Mol Biol Evol. 2014 Mar;31(3):625-35. doi: 10.1093/molbev/mst254. Epub 2013 Dec 12.

PMID:
24336878
20.

Nucleomorph genome sequence of the cryptophyte alga Chroomonas mesostigmatica CCMP1168 reveals lineage-specific gene loss and genome complexity.

Moore CE, Curtis B, Mills T, Tanifuji G, Archibald JM.

Genome Biol Evol. 2012;4(11):1162-75. doi: 10.1093/gbe/evs090.

Supplemental Content

Support Center